ZH1105柴油机气缸体三面攻螺纹组合机床设计(左主轴箱)说明书.doc
-
资源ID:106516
资源大小:329.62KB
全文页数:31页
- 资源格式: DOC
下载积分:8积分
扫码快捷下载

会员登录下载
微信登录下载
微信扫一扫登录
- 扫描成功!重扫
- 请在手机上确认支付
手机扫码下载
请使用微信 或支付宝 扫码支付
• 扫码支付后即可登录、下载文档,同时代表您同意《人人文库网用户协议》
• 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败
• 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
ZH1105柴油机气缸体三面攻螺纹组合机床设计(左主轴箱)说明书.doc
盐城工学院毕业设计说明书1目录0前言·······························································································································11、总体方案论证·····································································································32、计算部分····················································································································421、多轴箱的设计··············································································································422、切削转矩的计算·········································································································523、主轴直径的计算和主轴外伸尺寸的确定·································································624、切削速度的确定·········································································································625、切削功率的计算········································································································626、机床动力参数的计算·································································································7261、电动机功率的确定·······························································································7262、电动机的选择·······································································································727、攻螺纹主轴转速的计算·····························································································828、切削用量的计算·········································································································829、生产率计算················································································································8291、理想生产率计算···································································································9292、实际生产率计算··································································································9293、机床负荷率计算··································································································9210、多轴箱的传动系统设计··························································································9211、根据原始依据图计算主轴坐标··············································································11212、多轴箱中齿轮模数、齿数的确定··········································································12213、合拢轴的位置及齿轮齿数的确定··········································································14214、传动轴坐标计算·····································································································15215、验算中心距误差·····································································································16216、轴的校核·················································································································20217、齿轮校核·················································································································22218、靠模体的设计··········································································································223、设计部分···············································································································234、结论·························································································································245、小结························································································································25致谢································································································································25参考文献·····················································································································26附件清单·················································································································27ZH1105柴油机气缸体三面攻螺纹组合机床设计2摘要本文主要介绍ZH1105柴油机气缸体三面攻螺纹组合机机床的设计。因为工艺方案在很大程度上决定组合机床的结构配置和实用性能。因此应根据被加工工件的特点,按组合机床常用的设计方法、充分考虑各种影响因素,并分析后拟订出可靠的工艺方案。在设计多轴箱时,根据加工工序图确定所需设计的组合机床上完成的工艺内容,加工部位的尺寸、精度、表面粗糙度及技术要求,加工用的定位基准、压紧部位以及被加工零件的材料、硬度和在本机床加工前的加工余量。认真分析研究并确定设计方案,计算所需的功率,设计出适合加工本工序的组合机床。关键词:组合机床;加工工序;多轴箱;传动系统盐城工学院毕业设计说明书3Abstract:MainintroductioninthistextZH1105dieselengineaircylinderthreeoffendthedesignofthethreadcombinationmachinemachinebed,stud.Becausethecraftprojectdecidestoalargeextenttheconstructionthatcombinethemachinebedinstallswiththepracticalfunction.Sothatshouldaccordingtothecharacteristicsoftheworkpiece,accordingtocertainprinciple,knotwithcombinetheincommonusedesigninbedinmachinemethodandconsidereverykindofinfluencefactorwell,combinetheeconomicanalysisdrawupadependablecraftprojectbehind.Completeinmanystalksacombinationfor,accordingtoprocessingworkprefacediagramcertainthedesignneededmachinebedthatdesignthecraftcontents,processtheroughafixedpositionforandtechniquerequesting,processingusingbasisinsize,accuracy,surfaceofthepartandaddtopressthepartandisprocessedthematerial,degreeofhardnessofthespare.Keywords:Combinationmachinebed;Processtheworkpreface;Manystalksbox;Spreadtomovethesystem0前言组合机床主要用于平面加工和孔加工。平面加工包括铣平面、车端面、刮平面;孔加工包括钻、扩、铰、镗孔以及倒角、切槽、攻螺纹等。组合机床最适宜于加工各种大中型箱体类零件,如气缸体、气缸盖、变速箱体等零件。根据课题要求、ZH1105柴油机气缸体要加工工序的特点和减少工人的劳动强度、降低生产成本和提高加工效率用组合机床对ZH1105柴油机气缸体三面上31个螺纹进行加工。设计本组合机床时尽能的采用通用件,以降低成本。因此本组合机床应用通用多轴箱、通用主轴、传动件、齿轮和附加机构。通用件选用是根据所需的功率、进给力、进给速度等要求的。多轴箱尺寸应根据加工主轴分布位置通过估算,并圆整后选用相近似尺寸的标准规格的多轴箱,据此选择结合尺寸的动力箱。尽可能按通用部件的配套关系选用通用部件。工艺方案的拟定是组合机床设计的关键一步。因为工艺方案在很大程度上ZH1105柴油机气缸体三面攻螺纹组合机床设计4决定组合机床的结构配置和实用性能。应根据工件的加工特点,充分考虑各种影响因素,经济分析的基础拟定出可靠的工艺方案。从而确定组合机床的配置型式及结构方案应根据工件的结构特点,并进行组合机床总体方案图样文件的设计。粗精加工分开原则,粗加工时的切削负荷较大,切削产生的热变形、较大夹压力引起的工件变形以及切削振等动,对精加工工序十分不利,影响加工尺寸精度和表面粗糙度,因此应选择粗精加工工序分开的原则。拟定工艺方案时,在保证加工质量和操作维修方便的前提下,应适当提高工序集中程度。因此全面分析多方因数和理决定工序集中程度。被加工零件工序图是根据制定的工艺方案,表示所设计的组合机床完成的工序内容,加工部位的尺寸、精度、表面粗糙度及技术要求,加工用的定位基准、压紧部位等,它是组合机床设计的具体依据,也是制造、使用、调整和检验机床精度的重要文件。被加工零件工序图是在被加工零件图基础上,突出本机床的加工内容。加工示意图是在工艺方案和机床总体方案确定的基础上绘制的,加工示意图应与机床实际加工状态一致。是表达工艺方案具体内容的机床工艺方案图。它是设计刀具、夹具、多轴箱和液压、电气系统以及选择动力部件、绘制机床联系尺寸图的主要依据。加工示意图上要标注联系尺寸、切削用量(同一主轴箱上各主轴的每分钟进给量是相等的)、工作循环、攻退量、攻进量。机床联系尺寸总图是以被加工零件工序图和加工示意图为依据,并按选定的通用部件以及确定的专用部件的总体结构而绘制的。是用来表示机床的配置型式、主要构成及各部件安装位置、相互的联系、运动关系和操作方位的总体布局图。它为主轴箱、夹具等专用部件设计提供重要依据。生产率计算卡是反映机床实际生产率和切削用量、动作时间、生产纲领及负荷率。根据加工示意图所确定的工作循环以及切削用量,就可以计算机床生产率并编制生产率计算卡。它是用户验收机床生产率的重要依据。主轴箱是组合机床的重要专用部件。它是根据加工示意图所确定的工件加工孔的数量和位置、切削用量和主轴类型设计的传递各主轴运动的动力部件。主轴箱的设计方法是:绘制主轴箱的设计原是依据图;确定主轴结构、轴径及齿轮模数;拟定传动系统;计算主轴、传动轴坐标,绘制坐标检查图;绘制主轴箱总图,零件图及编制组件明细表。主轴和被加工零件在机床上是面对面安放的,因此,主轴箱主视图上的水平方向尺寸与零件工序图上的水平方向尺寸正好相反。主轴箱传动系统的拟定:先把全部主轴中心尽可能分布在一个或几个同心圆上,在同心圆的圆心上分别设置中间传动轴;非同心圆分布的一些主轴,也