会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > DOC文档下载

基于单片机的电动车智能充电器的设计.doc

  • 资源星级:
  • 资源大小:4.57MB   全文页数:25页
  • 资源格式: DOC        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

基于单片机的电动车智能充电器的设计.doc

1中文摘要.......................................................................................................................................2前言..............................................................................................................................................3第一章充电器原理.......................................................................................................................41.1蓄电池与充电技术..........................................................................................................41.2密封铅酸蓄电池的充电特性..........................................................................................41.3充电器充电原理..............................................................................................................51.3.1蓄电池充电理论基础...........................................................................................51.3.2充电器的工作原理...............................................................................................7第二章总体设计方案...................................................................................................................92.1系统设计..........................................................................................................................92.2方案策略..........................................................................................................................9第三章硬件电路设计.................................................................................................................113.1电路总体设计................................................................................................................113.2芯片介绍........................................................................................................................113.2.1LM358双运放....................................................................................................113.2.2UC3842单管开关电源......................................................................................123.2.3EL817光耦合器.................................................................................................133.2.4场效应管K1358.................................................................................................143.3电动车充电器原理及各元件作用的概述....................................................................153.3.1充电器原理图.....................................................................................................15图3.5充电器原理图...................................................................................................153.3.2各元器件作用概述.............................................................................................153.4功能模块电路设计........................................................................................................163.4.1第一路通电开始.................................................................................................163.4.2第二路UC3842电路.........................................................................................163.4.3第三路LM358(双运算放大器)电路............................................................173.5电动车充电器改进方案................................................................................................203.5.1增加充满电发声提示电路.................................................................................203.5.2加散热风扇.........................................................................................................21第四章总结与展望.....................................................................................................................22参考文献.........................................................................................................................................23致谢................................................................................................................................................242电动车高效智能充电器设计中文摘要本设计介绍了充电器对蓄电池充电的一般原理,从阀控蓄电池内部氧循环的设计理念出发,研究各种充电方法对铅酸蓄电池寿命的影响。针对蓄电池充电过程中出现的种种问题,分析现有各种充电方法存在的问题,提出一种可对铅酸蓄电池实现四段式慢脉冲充电的智能充电器设计方案。控制开关电源的脉冲频率和占空比,从而调节充电电流和电压,实现对蓄电池的分级慢脉冲充电。这个方案不仅可实现快速高效充电,同时可以减少析气,消除硫化,进行均衡充电,从而大大地延长了铅酸蓄电池的使用寿命。关键词慢脉冲充电蓄电池充电器AbstractThedesigndescribesthechargertothebatterychargerofthegeneralprinciples,fromtheinternaloxygencycleofvalveregulatedbatterydesignconceptsstartingtostudyavarietyofchargingmethodsforleadacidbatterylifeimplications.Forbatterychargingproblemsarisingintheprocess,analysisofexistingproblemsinavarietyofchargingmethods,proposedaleadacidbatteriescouldachievetheFourslowpulsechargeoftheintelligentchargerdesign.Controltheswitchingpowersupplypulsefrequencyanddutycycle,thusregulatingchargecurrentandvoltagetoachievetheclassificationofthebatterychargewithslowpulse.Thisprogramnotonlyforfastcharging,whilereducinganalysisofgas,toeliminatesulfide,abalancedcharge,thusgreatlyextendingtheservicelifeofleadacidbatteries.Keywordsslowpulsechargebatteriescharger3前言以动力蓄电池为能源的电动车被认为是21世纪的绿色工程,它的出现将汽车工业的发展带入了一个全新的领域。目前,电动车核心部件中的电动机、控制器和车体三大部件在理论和技术上已较为成熟,而另两大部件蓄电池、充电器的发展还不能满足电动车的要求,有一些理论和技术问题还有待攻关,现已成为影响电动交通工具发展的瓶颈。目前,我国的电动车用动力蓄电池大多为铅酸蓄电池,这主要是由于铅酸蓄电池具有技术成熟、成本低、电池容量大、跟随负荷输出特性好、无记忆效应等优点。当然,也有一些高性能电池,比如锂电池、燃料电池等。锂离子电池电动车在深圳已投入试运营,由上海研制的第二代燃料电池轿车超越二号也于2004年5月在北京的国际氢能大会上露面,但都还未能得到广泛的推广应用。铅酸蓄电池具有价格低廉、供电可靠、电压稳定等优点,因此广泛应用于国防、通信、铁路、交通、工农业生产部门。近年来全密封免维护铅酸蓄电池其密封好、无泄漏、无污染等优点,能够保证人体和各种用电设备的安全,而且在整个寿命期间,无需任何维护,从而揭开了铅酸蓄电池发展历程新的一页。众所周知,通信设备一般都采用免维护电池作为备用电源,许多电子设备必须的不间断电源系统(UPS)也离不开免维护电池,此外在应急灯、汽车、游艇中也越来越多的选用免维护电池。然而,由于充电方法不正确,充电技术不能适应免维护电池的特殊需求,造成电池很难达到规定的循环寿命。虽然近年来蓄电池自身的技术有了不小的进步,但作为其能量再次补充的充电器的发展非常缓慢,传统的常规充电时间过长,快速充电技术至今仍未能完全解决,严重地制约着电动车的发展。所以根据时代的发展及要求设计了一款目前市场充电器流行使用的方法,也是技术成熟的一种设计,采用UC3842驱动场效应管的单管开关电源配合LM358双运放电路设计的智能充电器。4第一章充电器原理1.1蓄电池与充电技术对于铅酸、镉镍、镍氢3类以水为溶剂的电解液蓄电池,为了使用上的安全、方便、长寿命和免维护,在全世界化学电源工作者数代人不懈的努力下,终于从大量的实验中发现了内部氧循环的理论机制,使得该3类蓄电池所有的充放电反应,能在一个设计完好的带阀控的密封容器中反复安全进行。即蓄电池在充电和过充电期间,正电极析出的氧到达负电极后,能全部被负电极吸收还原,关系为i(O2析出)i(O2还原),因而,蓄电池在长期的充放电过程中,不会造成电解液中水的损耗,以此来保证蓄电池的循环使用寿命与充电的安全。1.2密封铅酸蓄电池的充电特性电池充电通常要完成两个任务,首先是尽可能快地使电池恢复额定容量,另一是使用小电流充电,补充电池因自放电而损失的能量,以维持电池的额定容量。在充电过程中,铅酸电池负极板上的硫酸铅逐渐析出铅,正极板上的硫酸铅逐渐生成二氧化铅。当正负极板上的硫酸铅完全生成铅和二氧化铅后,电池开始发生过充电反应,产生氢气和氧气。这样,在非密封电池中,电解液中的水将逐渐减少。在密封铅酸蓄电池中,采用中等充电速率时,氢气和氧气能够重新化合为水。过充电开始的时间与充电的速率有关。当充电速率大于C/5时,电池容量恢复到额定容量的80%以前,即开始发生过充电反应。只有充电速率小于C/100,才能使电池在容量恢复到100%后,出现过充电反应。为了使电池容量恢复到100%,必须允许一定的过充电反应。过充电反应发生后,单格电池的电压迅速上升,达到一定数值后,上升速率减小,然后电池电压开始缓慢下降。由此可知,电池充足电后,维持电容容量的最佳方法就是在电池组两端加入恒定的电压。浮充电压下,充入的电流应能补充电池因自放电而失去的能量。浮充电压不能过高,以免因严重的过充电而缩短电池寿命。采用适当的浮充电压,密封铅酸蓄电池的寿命可达10年以上。实践证明,实际的浮充电压与规定的浮充电压相差5%时,免维护蓄电池的寿命将缩短一半。铅酸电池的电压具有负温度系数,5其单格值为-4mV/℃。在环境温度为25℃时工作很理想的普通(无温度补偿)充电器,当环境温度降到0℃时,电池就不能充足电,当环境温度上升到50℃时,电池将因严重的过充电而缩短寿命。因此,为了保证在很宽的温度范围内,都能使电池刚好充足电,充电器的各种转换电压必须随电池电压的温度系数而变。1.3充电器充电原理1.3.1蓄电池充电理论基础理论和实践证明,蓄电池的充放电是一个复杂的电化学过程。一般地说,充电电流在充电过程中随时间呈指数规律下降,不可能自动按恒流或恒压充电。充电过程中影响充电的因素很多,诸如电解液的浓度、极板活性物的浓度、环境温度等的不同,都会使充电产生很大的差异。随着放电状态、使用和保存期的不同,即使是相同型号、相同容量的同类蓄电池的充电也大不一样。上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向。图1.1最佳充电曲线由图1.1可以看出初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧6气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。蓄电池是可逆的。其放电及充电的化学反应式如下PbO2+Pb+2H2SO4→2PbSO4+2H2O(1)很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。一般来说,产生极化现象有3个方面的原因。1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所7带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。这3种极化现象都是随着充电电流的增大而严重。1.3.2充电器的工作原理目前,电动自行车主要以铅酸蓄电池为动力。铅酸蓄电池的主要优点是电池容量大、价格便宜并具有无记忆效应但存在的缺点是体积大、重量重和不能过充或过放。根据铅酸蓄电池的上述特点,铅酸蓄电池的充电过程一般分为四个阶段涓流充电快速充电均充电浮充电1,2,如图1.2所示图1.2铅酸蓄电池要求的充电电压、电流曲线根据充电前蓄电池残余电量的不同,每次充电的时间将有所不同。1涓流充电若蓄电池在充电初期已处于深度放电状态,为避免对蓄电池充电电流过大,造成热失控,微处理器通过监测蓄电池的电压,对蓄电池实行稳定小电流涓流充电。在涓流充电阶段,电池电压开始上升,当电池电压上升到能接受大电流充电的阀值时则转入快速充电阶段。2快速充电该阶段为大电流恒流充电,电池电压上升较快,当电压上升至均充电压阀值时,则转入均充阶段。3均充电该阶段为恒压充电,它可使电池容量快速恢复。这时充电电流逐渐减小,当电流下降至某一固定值时,自动转入浮充电。84浮充电该阶段主要用来补充蓄电池自放电所消耗的能量,此标志着充电过程结束。9第二章总体设计方案2.1系统设计根据课题的要求,系统采用开关电源,通过脉冲电流的方式来实现充电的目的。由市电送来的220V交流电经整流、滤波后,经脉冲变压器降压送给蓄电池进行充电。对系统信号进行采样和控制,将充电的电压和电流信号反馈回PWM信号发生器,由PWM信号发生器控制开关管通断的占空比完成充电的。当蓄电池的电压达到额定值后,说明蓄电池已经充满电。控制开关,断开电源,停止充电。2.2方案策略用PWM信号发生器比如UC3842实现的方案。蓄电池充电时,电压、电流采样电路将蓄电池的电压、电流信号进行采样,采样的信号经过各种处理后,分别送进PWM信号发生器的电压和电流反馈引脚。PWM信号发生器对反馈回来的电压、电流信号进行分析,然后调整PWM输出信号的占空比。这个PWM信号送给开关电源开关管,从而便调节的开关管在一个周期内关断和导通的时间,也就是控制了高频变压器通断的时间,从而实现控制高频变压器输出电压和电流的大小。这种方法是目前市场充电器流行使用的方法,也是一种很技术非常成熟的方法。这种方案的优点是,技术简单、成熟、有多年的实用经验、所需的元器件少、成本低。如下2.1方框图

注意事项

本文(基于单片机的电动车智能充电器的设计.doc)为本站会员(21ask)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5