会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > DOC文档下载

学科教育论文-数学思维与小学数学教学.doc

  • 资源星级:
  • 资源大小:21.43KB   全文页数:12页
  • 资源格式: DOC        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

学科教育论文-数学思维与小学数学教学.doc

学科教育论文数学思维与小学数学教学摘要帮助学生学会基本的数学思想方法是新一轮数学课程改革所设定的一个基本目标。以国际上的相关研究为背景,对小学数学教学中如何突出数学思维进行具体分析表明,即使是十分初等的数学内容也同样体现了一些十分重要的数学思维形式及其特征性质。关键词数学思维小学数学教学对于数学思维的突出强调是国际范围内新一轮数学课程改革的一个重要特征,如由美国的学校数学课程与评估的标准和我国的全日制义务教育数学课程标准(实验稿)(以下简称课程标准)关于数学教育目标的论述中就可清楚地看出。然而,就小学数学教育的现实而言,上述的理念还不能说已经得到了很好的贯彻,而造成这一现象的一个重要原因就是以下的认识小学数学的教学内容过于简单,因而不可能很好地体现数学思维的特点。以下将依据国际上的相关研究对这一观点作出具体分析,希望能促进这一方向上的深入研究,从而能够对于实际教学活动发挥积极的导向作用。一、数学化数学思维的基本形式众所周知,强调与现实生活的联系正是新一轮数学课程改革的一个重要特征。数学课程的内容一定要充分考虑数学发展进程中人类的活动轨迹,贴近学生熟悉的现实生活,不断沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体。1就努力改变传统数学教育严重脱离实际的弊病而言,这一做法是完全正确的但是,从更为深入的角度去分析,我们在此则又面临着这样一个问题,即应当如何去处理日常数学与学校数学之间的关系。事实上,即使就最为初等的数学内容而言,我们也可清楚地看到数学的抽象特点,而这就已包括了由日常数学向学校数学的重要过渡。例如,在几何题材的教学中,无论是教师或学生都清楚地知道,我们的研究对象并非教师手中的那个木制三角尺,也不是在黑板上或纸上所画的那个具体的三角形,而是更为一般的三角形的概念,这事实上就已包括了由现实原型向相应的数学模式的过渡。再例如,正整数加减法显然具有多种不同的现实原型,如加法所对应的既可能是两个量的聚合,也可能是同一个量的增加性变化,同样地,减法所对应的既可能是两个量的比较,也可能是同一个量的减少性变化然而,在相应的数学表达式中所说的现实意义、包括不同现实原型之间的区别(例如,这究竟表现了二元的静态关系还是一元的动态变化)则完全被忽视了它们所对应的都是同一类型的表达式,如459、734等,而这事实上就包括了由特殊到一般的重要过渡。应当强调的是,以上所说的可说是一种数学化的过程,后者集中地体现了数学的本质特点数学可被定义为模式的科学,也就是说,在数学中我们并非是就各个特殊的现实情景从事研究的,而是由附属于具体事物或现象的模型过渡到了更为普遍的模式。也正由于数学的直接研究对象是抽象的模式而非特殊的现实情景,这就为相应的纯数学研究提供了现实的可能性。例如,就以上所提及的加减法运算而言,由于其中涉及三个不同的量(两个加数与它们的和,或被减数、减数与它们的差),因此,从纯数学的角度去分析,我们完全可以提出这样的问题,即如何依据其中的任意两个量去求取第三个量。例如,就量的比较而言,除去两个已知数的直接比较以外,我们显然也可提出两个数的差是3,其中较小的数是4,问另一个数是几或者两个数的差是3,其中较大的数是4,问另一个数是几我们在此事实上已由具有明显现实意义的量化模式过渡到了可能的量化模式。综上可见,即使就正整数的加减法此类十分初等的题材而言,就已十分清楚地体现了数学思维的一些重要特点,特别是体现了在现实意义与纯数学研究这两者之间所存在的辩证关系。当然,从理论的角度看,我们在此又应考虑这样的问题,即应当如何去认识所说的纯数学研究的意义。特别是,我们是否应当明确肯定由日常数学过渡到学校数学的必要性,或是应当唯一地坚持立足于现实生活。由于后一问题的全面分析已经超出了本文的范围,在此仅指明这样一点与现实意义在一定程度上的分离对于学生很好地把握相应的数量关系是十分重要的。这正是国际上的相关研究、特别是近年来所兴起的民俗数学研究的一个重要结论尽管日常数学具有密切联系实际的优点,但也有着明显的局限性。例如,如果仅仅依靠自发的数学能力,人们往往就不善于从反面去思考问题,与此相对照,通过学校中的学习,上述的情况就会有很大改变,这就是说,纯数学的研究在帮助学生学会使用逆运算来解决问题方面有着明显的效果另外,同样重要的是,如果局限于特定的现实情景,所学到的数学知识在可迁移性方面也会表现出很大的局限性。一般地说,学校中的数学学习就是对学生经由日常生活所形成的数学知识进行巩固、适当重组、扩展和组织化的过程,这就意味着由孤立的数学事实过渡到了系统的知识结构,以及对于人类文化的必要继承。这正如著名数学教育家斯根普所指出的儿童来到学校虽然还未接受正式教导,但所具备的数学知识却比预料的多他们所需要的帮助是从(学校教学)活动中组织和巩固他们的非正规知识,同时需扩展他们这种知识,使其与我们社会文化部分中的高度紧密的知识体系相结合。2当然,我们还应明确肯定数学知识向现实生活复归的重要性。这正如著名数学家、数学教育家弗赖登塔尔所指出的数学的力量源于它的普遍性。人们可以用同样的数去对各种不同的集合进行计数,也可以用同样的数去对各种不同的量进行度量。尽管运算(等)所涉及的方面十分丰富,但又始终是同一个运算──这即是借助于算法所表明的事实。作为计算者人们容易忘记其所涉及的数以及他所面对的文字题中的算术问题的来源。但是,为了真正理解这种存在于多样性之中的简单性,在计算的同时我们又必须能够由算法的简单性回到多样化的现实。3总的来说,这就应当被看成数学化这一思维方式的完整表述,即其不仅直接涉及如何由现实原型抽象出相应的数学概念或问题,而且也包括了对于数量关系的纯数学研究,以及由数学知识向现实生活的复归。另外,相对于具体知识内容的学习而言,我们应当更加注意如何帮助学生很好地去掌握数学化的思想,我们应当从这样的角度去理解情境设置与纯数学研究的意义。这正如弗赖登塔尔所指出的数学化是一条保证实现数学整体结构的广阔途径情境和模型,问题与求解这些活动作为必不可少的局部手段是重要的,但它们都应该服从于总的方法。4二、凝聚算术思维的基本形式由以下关于算术思维基本形式的分析可以看出,思维的分析相对于具体知识内容的教学而言并非某种外加的成分,而是有着重要的指导意义。具体地说,这正是现代关于数学思维研究的一项重要成果,即指明了所谓的凝聚,也即由过程向对象的转化构成了算术以及代数思维的基本形式,这也就是说,在数学特别是算术和代数中有不少概念在最初是作为一个过程得到引进的,但最终却又转化成了一个对象──对此我们不仅可以具体地研究它们的性质,也可以此为直接对象去施行进一步的运算。例如,加减法在最初都是作为一种过程得到引进的,即代表了这样的输入输出过程由两个加数(被减数与减数)我们就可求得相应的和(差)然而,随着学习的深入,这些运算又逐渐获得了新的意义它们已不再仅仅被看成一个过程,而且也被认为是一个特定的数学对象,我们可具体地去指明它们所具有的各种性质,如交换律、结合律等,从而,就其心理表征而言,就已经历了一个凝聚的过程,即由一个包含多个步骤的运作过程凝聚成了单一的数学对象。再如,有很多教师认为,分数应当定义为两个整数相除的值而不是两个整数的比,这事实上也可被看成包括了由过程向对象的转变,这就是说,就分数的掌握而言我们不应停留于整数的除法这样一种运算,而应将其直接看成一种数,我们可以此为对象去实施加减乘除等运算。对于所说的凝聚可进一步分析如下

注意事项

本文(学科教育论文-数学思维与小学数学教学.doc)为本站会员(liyun)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5