会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译---基准分布式控制规律的运动协调非完整的机器人 英文版.pdf

  • 资源星级:
  • 资源大小:493.62KB   全文页数:10页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译---基准分布式控制规律的运动协调非完整的机器人 英文版.pdf

IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009851VisionBased,DistributedControlLawsforMotionCoordinationofNonholonomicRobotsNimaMoshtagh,Member,IEEE,NathanMichael,Member,IEEE,AliJadbabaie,SeniorMember,IEEE,andKostasDaniilidis,SeniorMember,IEEEAbstractInthispaper,westudytheproblemofdistributedmotioncoordinationamongagroupofnonholonomicgroundrobots.Wedevelopvisionbasedcontrollawsforparallelandbalancedcircularformationsusingaconsensusapproach.Theproposedcontrollawsaredistributedinthesensethattheyrequireinformationonlyfromneighboringrobots.Furthermore,thecontrollawsarecoordinatefreeanddonotrelyonmeasurementorcommunicationofheadinginformationamongneighborsbutinsteadrequiremeasurementsofbearing,opticalflow,andtimetocollision,allofwhichcanbemeasuredusingvisualsensors.Collisionavoidancecapabilitiesareaddedtotheteammembers,andtheeffectivenessofthecontrollawsaredemonstratedonagroupofmobilerobots.IndexTermsCooperativecontrol,distributedcoordination,visionbasedcontrol.I.INTRODUCTIONCOOPERATIVEcontrolofmultipleautonomousagentshasbecomeavibrantpartofroboticsandcontroltheoryresearch.Themainunderlyingthemeofthislineofresearchistoanalyzeand/orsynthesizespatiallydistributedcontrolarchitecturesthatcanbeusedformotioncoordinationoflargegroupsofautonomousvehicles.Someofthisresearchfocussesonflockingandformationcontrol9,14,16,22,31,andsynchronization2,39,whileothersfocusonrendezvous,distributedcoverage,anddeployment1,5.Akeyassumptionimpliedinallofthepreviousreferencesisthateachvehicleorrobothereaftercalledanagentcommunicatesitspositionand/orvelocityinformationtoitsneighbors.Inspiredbythesocialaggregationphenomenainbirdsandfish6,30,researchersinroboticsandcontroltheoryhaveManuscriptreceivedFebruary23,2008revisedJanuary31,2009.FirstpublishedJune10,2009currentversionpublishedJuly31,2009.ThispaperwasrecommendedforpublicationbyAssociateEditorZ.W.LuoandEditorJ.P.Laumonduponevaluationofthereviewerscomments.TheworkofA.JadbabaiewassupportedinpartbytheArmyResearchOffice–MultidisciplinaryUniversityResearchInitiativeARO/MURIunderGrantW911NF0510381,inpartbytheOfficeofNavalResearchONR/YoungInvestigatorProgram542371,inpartbyONRN000140610436,andinpartunderContractNSFECS0347285.TheworkofK.DaniilidiswassupportedinpartunderContractNSFIIS0083209,inpartunderContractNSFIIS0121293,inpartunderContractNSFEIA0324977,andinpartunderContractARO/MURIDAAD190210383.N.MoshtaghwaswiththeGeneralRobotics,Automation,Sensing,andPerceptionLaboratory,UniversityofPennsylvania,Philadelphia,PA19104USA.HeisnowwithScientificSystemsCompany,Inc.,Woburn,MA01801USAemailnmoshtaghssci.com.N.Michael,A.Jadbabaie,andK.DaniilidisarewiththeGeneralRobotics,Automation,Sensing,andPerceptionLaboratory,UniversityofPennsylvania,Philadelphia,PA19104USAemailnmichaelgrasp.upenn.edujadbabaigrasp.upenn.edukostasgrasp.upenn.edu.Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineathttp//ieeexplore.ieee.org.DigitalObjectIdentifier10.1109/TRO.2009.2022439developedtools,methods,andalgorithmsfordistributedmotioncoordinationofmultivehiclesystems.Twomaincollectivemotionsthatareobservedinnatureareparallelmotionandcircularmotion21.Onecaninterpretstabilizingthecircularformationasanexampleofactivityconsensus,i.e.,individualsaremovingaroundtogether.Stabilizingtheparallelformationisanotherformofactivityconsensusinwhichindividualsmoveofftogether33.Circularformationsareobservedinfishschooling,whichisawellstudiedtopicinecologyandevolutionarybiology6.Inthispaper,wepresentasetofcontrollawsforcoordinatedmotions,suchasparallelandcircularformations,foragroupofplanaragentsusingpurelylocalinteractions.Thecontrollawsareintermsofshapevariables,suchastherelativedistancesandrelativeheadingsamongtheagents.However,theseparametersarenotreadilymeasurableusingsimpleandbasicsensingcapabilities.Thismotivatestherewritingofthederivedcontrollawsintermsofbiologicallymeasurableparameters.Eachagentisassumedtohaveonlymonocularvisionandisalsocapableofmeasuringbasicvisualquantities,suchasbearingangle,opticalflowbearingderivative,andtimetocollision.Rewritingthecontrolinputsintermsofquantitiesthatarelocallymeasurableisequivalenttoexpressingtheinputsinthelocalbodyframe.Suchachangeofcoordinatesystemfromaglobalframetoalocalframeprovidesuswithabetterintuitiononhowsimilarbehaviorsarecarriedoutinnature.Verificationofthetheorythroughmultirobotexperimentsdemonstratedtheeffectivenessofthevisionbasedcontrollawstoachievethedesiredformations.Ofcourse,inreality,anyformationcontrolrequirescollisionavoidance,andindeed,collisionavoidancecannotbedonewithoutrange.Inordertoimprovetheexperimentalresults,weprovidedinteragentcollisionavoidancepropertiestotheteammembers.Inthispaper,weshowthatthetwotasksofformationkeepingandcollisionavoidancecanbedonewithdecoupledadditivetermsinthecontrollaw,wherethetermsforkeepingparallelandcircularformationsdependonlyonvisualparameters.Thispaperisorganizedasfollows.InSectionII,wereviewanumberofimportantrelatedworks.SomebackgroundinformationongraphtheoryandothermathematicaltoolsusedinthispaperareprovidedinSectionIII.TheproblemstatementisgiveninSectionIV.InSectionsVandVI,wepresentthecontrollersthatstabilizeagroupofmobileagentsintoparallelandbalancedcircularformations,respectively.InSectionVII,wederivethevisionbasedcontrollersthatareintermsofthevisualmeasurementsoftheneighboringagents.InSectionVIII,collisionavoidancecapabilitiesareaddedtothecontrollaws,andtheireffectivenessistestedonrealrobots.15523098/26.00©2009IEEEAuthorizedlicenseduselimitedtoNanchangUniversity.DownloadedonJanuary12,2010at2002fromIEEEXplore.Restrictionsapply.852IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009II.RELATEDWORKANDCONTRIBUTIONSTheprimarycontributionofthispaperisthepresentationofsimplecontrollawstoachieveparallelandcircularformationsthatrequireonlyvisualsensing,i.e.,theinputsareintermsofquantitiesthatdonotrequirecommunicationamongnearestneighbors.IncontrastwiththeworkofJusthandKrishnaprasad17,MoshtaghandJadbabaie27,Paleyetal.32,33,andSepulchreetal.35,whereitisassumedthateachagenthasaccesstothevaluesofitsneighborspositionsandvelocities,wedesigndistributedcontrollawsthatuseonlyvisualcluesfromnearestneighborstoachievemotioncoordination.Ourapproachonderivingthevisionbasedcontrollawscanbeclassifiedasanimagebasedvisualseroving41.Inimagebasedvisualservoing,featuresareextractedfromimages,andthenthecontrolinputiscomputedasafunctionoftheimagefeatures.In8,12,and38,authorsuseomnidirectionalcamerasastheonlysensorforrobots.In8and38,input–outputfeedbacklinearizationisusedtodesigncontrollawsforleaderfollowingandobstacleavoidance.However,theyassumethataspecificverticalposeofanomnidirectionalcameraallowsthecomputationofbothbearinganddistance.IntheworkofPrattichizzoetal.12,thedistancemeasurementisnotusedhowever,theleaderusesextendedKalmanfilteringtolocalizeitsfollowers,andcomputesthecontrolinputsandguidestheformationinacentralizedfashion.Inourpaper,thecontrolarchitectureisdistributed,andwedesigntheformationcontrollersbasedonthelocalinteractionamongtheagentssimilartothatof14and22.Furthermore,forourvisionbasedcontrollers,nodistancemeasurementisrequired.In25and34,circularformationsofamultivehiclesystemundercyclicpursuitisstudied.Theirproposedstrategyisdistributedandsimplebecauseeachagentneedstomeasuretherelativeinformationfromonlyoneotheragent.Itisalsoshownthattheformationequilibriaofthemultiagentsystemaregeneralizedpolygons.Incontrastto25,ourcontrollawisanonlinearfunctionofthebearingangles,andasaresult,oursystemconvergestoadifferentsetofstableequilibria.III.BACKGROUNDInthissection,webrieflyreviewanumberofimportantconceptsregardinggraphtheoryandregularpolygonsthatweusethroughoutthispaper.A.GraphTheoryAnundirectedgraphGconsistsofavertexsetVandanedgesetE,whereanedgeisanunorderedpairofdistinctverticesinG.Ifx,y∈Vandx,y∈E,thenxandyaresaidtobeadjacent,orneighbors,andwedenotethisbywritingx∼y.Thenumberofneighborsofeachvertexisitsdegree.Apathoflengthrfromvertexxtovertexyisasequenceofr1distinctverticesthatstartwithxandendwithysuchthatconsecutiveverticesareadjacent.IfthereisapathbetweenanytwoverticesofagraphG,thenGissaidtobeconnected.TheadjacencymatrixAGaijofanundirectedgraphGisasymmetricmatrixwithrowsandcolumnsindexedbytheverticesofG,suchthataij1ifvertexiandvertexjareneighbors,andaij0otherwise.Wealsoassumethataii0foralli.ThedegreematrixDGofagraphGisadiagonalmatrixwithrowsandcolumnsindexedbyV,inwhichthei,ientryisthedegreeofvertexi.ThesymmetricsingularmatrixdefinedasLGDG−AGiscalledtheLaplacianofG.TheLaplacianmatrixcapturesmanytopologicalpropertiesofthegraph.TheLaplacianLisapositivesemidefinitematrix,andthealgebraicmultiplicityofitszeroeigenvaluei.e.,thedimensionofitskernelisequaltothenumberofconnectedcomponentsinthegraph.Thendimensionaleigenvectorassociatedwiththezeroeigenvalueisthevectorofones,1n1,...,1T.Formoreinformationongraphtheory,see13.B.RegularPolygonsLetd1andnanddarecoprime,thentheedgesintersect,andthepolygonisastar.Ifnanddhaveacommonfactorl1,thenthepolygonconsistsofltraversalsofthesamepolygonwith{n/l}verticesandedges.Ifdn,thepolygon{n/n}correspondstoallpointsatthesamelocation.Ifdn/2withneven,thenthepolygonconsistsoftwoendpointsandalinebetweenthem,withpointshavinganevenindexononeendandpointshavinganoddindexontheother.Formoreinformationonregulargraphs,see7.IV.PROBLEMSTATEMENTConsideragroupofnunitspeedplanaragents.Eachagentiscapableofsensinginformationfromitsneighbors.Theneighborhoodsetofagenti,thatis,Ni,isthesetofagentsthatcanbeseenbyagenti.Theprecisemeaningofseeingwillbeclarifiedlater.Thesizeoftheneighborhooddependsonthecharacteristicsofthesensors.TheneighboringrelationshipbetweenagentscanbeconvenientlydescribedbyaconnectivitygraphGV,E,W.Definition1ConnectivitygraphTheconnectivitygraphGV,E,Wisagraphconsistingof1asetofverticesVindexedbythesetofmobileagents2asetofedgesE{i,j|i,j∈V,andi∼j}3asetofpositiveedgeweightsforeachedgei,j.TheneighborhoodofagentiisdefinedbyNi.{j|i∼j}⊆V\{i}.Letrirepresentthepositionofagenti,andletvibeitsvelocityvector.ThekinematicsofeachunitspeedagentisAuthorizedlicenseduselimitedtoNanchangUniversity.DownloadedonJanuary12,2010at2002fromIEEEXplore.Restrictionsapply.MOSHTAGHetal.VISIONBASED,DISTRIBUTEDCONTROLLAWSFORMOTIONCOORDINATIONOFNONHOLONOMICROBOTS853Fig.1.TrajectoryofeachagentisrepresentedbyaplanarFrenetframe.givenby˙rivi˙viωiv⊥i˙v⊥i−ωivi1wherev⊥iistheunitvectorperpendiculartothevelocityvectorviseeFig.1.Theorthogonalpair{vi,v⊥i}formsabodyframeforagenti.WerepresentthestackvectorofallthevelocitiesbyvvT1,...,vTnT∈R2n1.Thecontrolinputforeachagentistheangularvelocityωi.Sinceitisassumedthattheagentsmovewithconstantunitspeed,theforceappliedtoeachagentmustbeperpendiculartoitsvelocityvector,i.e.,theforceoneachagentisagyroscopicforce,anditdoesnotchangeitsspeedandhence,itskineticenergy.Thus,ωiservesasasteeringcontrol16foreachagent.Letusformallydefinetheformationsthatwearegoingtoconsider.Definition2ParallelformationTheconfigurationinwhichtheheadingsofallagentsarethesameandvelocityvectorsarealignediscalledtheparallelformation.Notethatinthisdefinition,wedonotconsiderthevalueoftheagreeduponvelocitybutjustthefactthattheagreementhasbeenreached.Attheequilibrium,therelativedistancesoftheagentsdeterminetheshapeoftheformation.Anotherinterestingfamilyofformationsisthebalancedcircularformation.Definition3BalancedcircularformationTheconfigurationwheretheagentsaremovingonthesamecirculartrajectoryandthegeometriccenteroftheagentsisfixediscalledthebalancedcircularformation.Theshapeofsuchaformationcanberepresentedbyanappropriateregularpolygon.Inthefollowingsections,westudyeachformationanddesignitscorrespondingdistributedcontrollaw.V.PARALLELFORMATIONSOurgoalinthissectionistodesignacontrollawforeachagentsothattheheadingsofthemobileagentsreachanagreement,i.e.,theirvelocityvectorsarealigned,thusresultinginaswarmlikepattern.ForanarbitraryconnectivitygraphG,considertheLaplacianmatrixL.We,therefore,defineameasureofmisalignmentasfollows27,35wv12summationdisplayi∼j|vi−vj|212〈v,¯Lv〉2wherethesummationisoverallthepairsi,j∈E,and¯LL⊗I2∈R2n2n,withI2beingthe22identitymatrix.Thetimederivativeofwvisgivenby˙wvnsummationdisplayi1〈˙vi,¯Lvi〉nsummationdisplayi1ωi〈v⊥i,¯Lvi〉where¯Lvi∈R2isthesubvectorof¯Lvassociatedwiththeithagent.Thus,thefollowinggradientcontrollawguaranteesthatthepotentialwvdecreasesmonotonicallyωiκ〈v⊥i,¯Lvi〉−κsummationdisplayj∈Ni〈v⊥i,vij〉3whereκ0.6Thefollowingtwotheorems28presenttheresultswhenbalancedcircularformationsareattainedforagroupofunitspeedagentswithfixedconnectivitygraphs.Theorem2isforthecasewhenGisacompletegraph,andTheorem3isfortheringgraph.Theorem2Considerasystemofnagentswithkinematics5.GivenacompleteconnectivitygraphGandapplyingcontrollaw6,thenagentsystemalmostgloballyasymptoticallyconvergestoabalancedcircularformation,whichisdefinedinDefinition3.ProofSee28fortheproof.squaresolidThereasonforalmostglobalstabilityofthesetofbalancedstatesisthatthereisameasurezerosetofstateswheretheequilibriumisunstable.Thissetischaracterizedbythoseconfigurationsthatmagentsareatantipodalpositionfromtheothern−magents,where1≤mn/2.Next,weconsiderthesituationthattheconnectivitygraphhasaringtopologyGring.Theorem3Considerasystemofnagentswithkinematics5.SupposetheconnectivitygraphhastheringtopologyGringandthateachagentappliesthebalancingcontrollaw6.Then,therelativeheadingswillconvergetothesameangleφo.Ifφo∈π/2,3π/2,thebalancedstateislocallyexponentiallystable.ProofSee28fortheproof.squaresolidAttheequilibrium,thefinalconfigurationforGringisaregularpolygon{n/d}inwhichtherelativeanglebetweentwoconnectednodesisφo2πd/n.FromTheorem3,ifthisanglesatisfiesφo∈π/2,3π/2,thenthebalancedstateisstable.Thus,thestableconfigurationcorrespondstoapolygonwithd∈n/4,3n/4.Forexample,forn5,thestableformationsarepolygons{5/3}and{5/4},whicharethesamepolygonsasobtainedwithreverseorderingofthenodes.Forn4,thestableformationis{4/2}.Actually,simulationssuggestthatthelargestregionofattractionfornevenbelongstoapolygon{n/d},withdn/2,andfornodd,itisastarpolygon{n/d},withdn±1/2.VII.VISIONBASEDCONTROLLAWSNotethatthecontrolinputs4and6forparallelandcircularformationsdependontheshapevariables,i.e.,relativeheadingsandpositions,whicharenotdirectlymeasurableusingvisualsensors,suchasasinglecameraonarobot,becauseestimationoftherelativepositionandmotionrequiresbinocularvision.Thismotivatesustorewriteinputs4and6intermsofparametersthatareentirelymeasurableusingasimplevisualsensor.Next,wedefinethevisualparametersthatwewillusetoderivethevisionbasedcontrollaws.BearingangleLetrixiyiTbethelocationofagentiinafixedworldframe,andletvi˙xi˙yiTbeitsvelocityvector.Theheadingororientationofagentiisthengivenbyθiatan2˙yi,˙xi.7AuthorizedlicenseduselimitedtoNanchangUniversity.DownloadedonJanuary12,2010at2002fromIEEEXplore.Restrictionsapply.

注意事项

本文(外文翻译---基准分布式控制规律的运动协调非完整的机器人 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5