会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译--在水中利用高密度飞秒激光对玻璃表面进行加工 英文版.pdf

  • 资源星级:
  • 资源大小:367.79KB   全文页数:5页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--在水中利用高密度飞秒激光对玻璃表面进行加工 英文版.pdf

DOI10.1007/s003390073930zAppl.Phys.A87,691–6952007MaterialsScienceProcessingAppliedPhysicsAy.hayasakia117d.kawamuraHighdensitybumpformationonaglasssurfaceusingfemtosecondlaserprocessinginwaterDepartmentofOpticalScienceandTechnology,FacultyofEngineering,TheUniversityofTokushima,21Minamijosanjimacho,Tokushima7708506,JapanReceived13November2006/Accepted29January2007Publishedonline29March2007©SpringerVerlag2007ABSTRACTMicrometersizedbumpswereformedonaglasssurfaceusingafocusedfemtosecondlaserprocessinginwater.Thebumpswereformedoverawiderangesofpulseirradiationparameters,includingirradiationenergyandfocusposition.Thebumpsexhibitedawidevarietyofmorphologiesandsizesdependingontheparameters.Theuseofaliquid,namelyheavywater,whichreturnsafterbreakdownandcavitationbubbleformation,enabledustofabricatebumpswithhighspatialdensity,whichisnotpossibleusingasolidcoatingthatisablated.Adesiredarrangementofbumpsonaglasssurfacewasfabricatedbytuningtheprocessingtimeintervaltobemorethanthedisappearancetimeofabubble,generatedbyfocusingafemtosecondlaserpulsenearthewater/glassinterface.PACS42.62.Cf42.70.Ce52.38.Mf78.47.p79.20.Ds1IntroductionFemtosecondlasersarepowerfultoolsformicroandnanostructuringoftransparentmaterialsbecausetheycanprocesswithhighspatialresolutionresultingfrommultiplephotonabsorption,andreducedthermaldamageduetotheultrashortinteractiontimebetweenthelaserpulseandthematerial,aswellasvariousphysicalphenomenacausedbytheultrahighintensityofthelaserpulse1–11.Femtosecondlaserprocessingisbeingincreasinglyappliedtothedevelopmentofthreedimensionalopticalandfluidicdevices7,8,10–14.Asthemorphologyoftheprocessedtransparentmaterialisrelatedtothethermaleffectsofvaporizationanddissolutionduetothermaldiffusion,interactionwiththehotvaporplume,andalowenergydensityregioninthelaserpulse,itishighlysensitivetonotonlythephysicalpropertiesofthematerial,butalsotothelaserirradiationparameters,suchasthewavelength,pulseduration,pulseenergy,numericalapertureofthefocusedbeam,andthefocusposition.Inparticular,whenafemtosecondlaserpulseisfocusednearthesurfaceofatransparentmaterial,adifferenceinthefocuspositiongivesrisetoalargedifferenceinthesurfacemorphology.a117Fax81886569435,Emailhayasakiopt.tokushimau.ac.jpThetypicalsurfacemorphologyofglassprocessedbyatightlyfocusedfemtosecondlaserpulse,changesfromacavitytoabumpwhenthefocuspositionchangesfromtheoutsidetotheinsideoftheglass.Thecavityissurroundedbyaringshapedprotrusionandscattereddebris.Theirsize,andtheamountofdebrisstronglydependsonthefocuspositionalso.Abumpwithadiameterfromseveralhundrednanometerstoseveralmicrometersisformedbymeltingtheglasssurfacewiththemeltedglassbeingpushedupbyamicroexplosioninsidetheglass15–20.Duetotherangesoffocalpositionandirradiationpulseenergy,thesurfacemeltingandtheinternalmicroexplosionoccursimultaneouslyandthebumpsformedareverynarrow.Bumpstypicallyexhibitssmallvariationinsizeandstructure.Inapreviousstudy,wefoundthatatransparentcoatingontheglassfordecreasingtheamountofdebrisattachedtotheglasssurfaceallowsbumpformationoveraslightlywiderrangeoffocalpositionscomparedtobareglass,whenthecoatingthicknessissufficientlylargerthanthelengthofthefocalvolume19,21.Furthermore,wefoundthatwhenthecoatingthicknessisshorterthanthelengthofthefocalvolume,thatis,whenthecoatingsurfaceisablatedbyasinglelaserpulsefocusedattheboundarybetweenthetransparentcoatingandtheglass,bumpswereproducedoverafairlywiderangeoffocuspositionscomparedtousingathickcoating20.Fromthoseinvestigations,webelievethattheamountofcoatingmaterialablatedinthefocalvolume,whichdependsonthecoatingthickness,affectsthestrengthofashieldingeffectoftheplasmageneratedwhenablatingthecoating.Asaresult,thesizeandstructureoftheformedbumpcanbechanged.Thetransparentcoatingmethodhasthedisadvantagethatthespatialdensityofthebumpsislimitedtoseveralmicrometersbecauseofablationofthetransparentcoating.Inordertoachievecontrollablefabricationofbumpswithahighdensity,itispossibletouseliquidonthetransparentmaterialinplaceofthetransparentcoatingduringfemtosecondlaserprocessing,becausetheliquidnaturallyreturnsafterbreakdownandbubbleformation.Fabricationofcomplexstructuresonasiliconsurfacebyfemtosecondlaserprocessinginwaterhasbeendemonstrated22–24.Inthispaper,wedemonstrateformationofhighdensitymicrometersizedbumpsbyfemtosecondlaserprocessinginwater.InSect.2,wedescribetheexperimentalsetupand692AppliedPhysicsA–MaterialsScienceProcessingprocedure.InSect.3,wedescribetheexperimentalresults.Weinvestigatedtheeffectsofirradiationparameters,includingenergyandfocalposition,onthemorphologyandsizeofthebumps.Wedemonstratedthat,bytuningtheprocessingtimeintervaltobemorethanthedisappearancetimeofabubble25–28generatedbyafemtosecondlaserpulsefocusednearthewater/glassinterface,wecouldfabricateadesiredstructureontheglasssurface,composedofhighdensitybumps.InSect.4,weconcludeourstudy.2ExperimentalsetupandprocedureTheexperimentalsetupconsistedofanamplifiedfemtosecondlaserandanopticalmicroscopeandisshowninFig.1.Itwasthesameasthesetupusedinourpreviouswork19,20.Theamplifiedfemtosecondlaserproducedpulseswithapeakwavelengthof800nm,adurationof∼150fs,andamaximumrepetitionrateof1kHz.TheirradiationpulseenergyEatthesamplewascontrolledbyneutraldensityfilters,andisgivenbytheproductoftheenergymeasuredbeforeintroducingthelaserpulseintotheopticalmicroscopeOlympus,IX70andthetransmittanceoftheopticalmicroscope,includinga40objectivelensnumericalaperture,NA0.65.Thetransmittanceofthemicroscopewas0.69.TheprocessedareawasobservedundertransmittedilluminationbyausualchargecoupleddeviceCCDimagesensorwiththeframerateof30frames/s.ThefocuspositionZofthelaserpulsewasdefinedasthedistancemovedalongtheopticalaxisbythemicroscopestage.ThezeropositionZ0wasdefinedasthepositionwhereastructurewasformedontheglasssurfacebyirradiationofalaserpulsewithnearablationthresholdenergy.ThestructureofthesampleisalsoshowninFig.1.Thesamplewaspreparedasfollows.FourordinarymicroscopecoverslipsMatsunamiwhichweresubjectedtoultrasoniccleaninginethanolandpurewaterwereprepared.TheywereFIGURE1Experimentalsetupandthestructureofthesample.Thespacerglasseswereremovedwhentheprocessingwasperformedatargetglass,awindowglassforsandwichingwater,andtwospacerglasseswithathicknessof130µm.PolymethylmethacrylatePMMAwithtoluenesolventwasusedtoformwallsonthewindowglass.Aftersufficientlyevaporatingthesolventthespacerglasseswereremoved,andasmallchamberwithasidelengthof10–15mmcomposedofthePMMAwallsontheglasswasformed.WaterwasdroppedinthesmallchamberandthetargetglasswasfixedonthechamberwithasmallamountofthePMMAthatwasusedasaglue.Inthisexperiment,deuteriumoxideheavywater,hereafterreferredtosimplyaswaterwasusedbecauseofitslowlinearabsorptionaroundthewavelengthof800nm.Afterprocessing,thetargetglasswasremovedfromthechamberandsubjectedtoultrasoniccleaninginpurewaterandethanol.ThesurfacestructureoftheprocessedareawasobservedwithanatomicforcemicroscopeAFMDigitalInstruments,Dimension3000.3ExperimentalresultsFigure2showsstructuresprocessedinwateroverarangeofZfrom−4.0to12.0µmwhentheenergyEwas2.1µJ.Figure2aandbshowanAFMimageanditscorrespondingprofile,whoseverticalrangeis±500nm.Figure2canddshowtopandsideviewsoftheprocessedareaobservedwiththetransmissionopticalmicroscope.Figure2eshowsthediameterandheightofthebumps,whichwereobtainedfromtheAFMobservation,andthelengthofavoid,whichFIGURE2aAFMimagesoftheprocessedareaandbtheirprofiles.Theirradiationenergywas2.1µJ.Theverticalrangeis±500nm.cTopanddsideviewsobservedwithatransmissionopticalmicroscope.eDiameterandheightofbumpsversusfocusposition,andthelengthofvoidsformedintheglassversusfocuspositionHAYASAKIetal.Highdensitybumpformationonaglasssurfaceusingfemtosecondlaserprocessinginwater693wasobtainedfromasideviewobservation.ThebumpswereformedontheglasssurfaceoverawiderangeofZ,from−4.0to8.0µm.AsZincreased,theheightanddiameterofthebumpsincreased.WhenZwas6.0µm,thebumphadamaximumheightof400nmandadiameterof3.6µm.WhenZwas8.0µm,alowbumpwithaheightof50nmwasformed.WhenZwasgreaterthan8.0µm,voidswereformedinsidetheglassandnostructurewasformedontheglasssurface.ThelengthofthevoidunderthebumpalsoincreasedasZincreased.ThevoidsformedwhenZwas4to12µmwerenearlyequalinlength.UndermoredetailedobservationinthesideviewshowninFig.2d,wefoundthatthevoidshaddifferentgraylevelswhenZwasbetween6.0and8.0µm.ThedarkhueofthevoidsunderthehighbumpsatZ3.0µmandZ6.0µmwasdarkerthanthoseofthevoidsformedcompletelyinsidetheglass.Weexpectedthevoidinthehighbumptohavelowerdensitythantheothers,becauseaninternalmicroexplosiondisplacedtheglassmaterialfromthefocalpointandformedthehighbump,thuscausingadecreaseindensity.Thisbumpformationphenomenonisthesameasthatobservedinourpreviousstudyinwhichglasshavingatransparentpolymercoatingwasprocessed.Theprincipleofbumpformationinthatstudywasbasedonthesuppressionofthematerialemissionfromtheglasssurfacebyashieldingeffectofplasmageneratedbyablationofthepolymerandbyphysicalblockingofthepolymer.OnedifferenceinthepresentstudyisthatthebumpformationintheglassprocessedinwateroccursoverawiderrangeofZ,asshowninFig.3.TheirradiationbeamparameterswerealmostthesameasourpreviousexperimentsshowninFig.3in19.TheirradiationenergywasE0.69µJ.Whenprocessingglasswithapolymercoating,bumpformationwasobservedwhenZwas−1.0to4.0µm20whereaswhenprocessinginwater,bumpformationwasobservedwhenZwas−4.0to7.0µm.Themainreasonforthedifferenceisthatthephysicalblockingofwaterisweakerthanthatofthepolymercoating.Thisisfurthersupportedbytheresultsforstructuresprocessedwithhighpulseenergies,aboveseveralmicrojoules,discussedinthenextparagraph.Figure4showsAFMimagesoftheprocessedstructuresforvariousenergiesEwhenZ0.BumpswereformedwhenEwas0.17to6.9µJ,andtheirstructuresdrasticallychangeddependingonE.ThediameterandheightofthebumpincreasedasEincreasedto4.1µJ.WhenEwas4.1µJ,thediameterwas5.1µmandtheheightwas1.57µm.WithfurtherincreaseofE,bothdimensionsdecreased.WhenE2.1µJ,therewaslittledebrisaroundtheperipheryofthebump.Although,whenE≥2.1µJ,debriswasdistributedaroundtheperiphery,andtheamountofdebrisincreasedasEincreased.ThescatteredregionofthedebrisisindicatedbythesquaresonthesolidlinesinFig.4.Processinginwaterproducedmorescattereddebrisaroundthebumpthanprocessingwithanappliedpolymercoating.Thisfurthersupportstheassertionthatwaterhadweakerphysicalblockingthanthepolymercoating.Mostofthedebriswasnotremovedbyultrasoniccleaninginwater.Therefore,theglassmaterialscatteredintheliquidstateattheglass/waterinterfaceadheredtotheglasssurfaceandsolidified.Figure5showbumpsarrangedinastraightlinewithhighdensity.ThelinearlyarrangedbumpswereprocessedbyirFIGURE3Diameterandheightofbumpsversusfocusposition.Ewas0.69µJFIGURE4AFMimagesofthestructuresprocessedwithaE0.69µJ,bE2.8µJ,cE4.1µJ,dE4.8µJ,eE5.5µJandfE6.9µJ.gDiameterandheightofbumpanddebrisdiameterversusirradiationenergyradiatingthelaserpulsesataspatialintervalshorterthanthediameterofasinglebump.Inthiscase,thespatialintervalDwassetto2.0µm,undertheconditionthatasinglebumpwithadiameterof3.6µmandaheightof56nmwasformedwhenEwas3.5µJandZwas6.0µm.Thestructurewasprocessedbyscanningthemicroscopestagesothatasinglepulsewasirradiatedateachlocation,repeatedatarepetitionrateRof1Hz.TheshapeofthelinearlyarrangedbumpswascontrolledbychangingD,asshowninFig.6aandb.WhenDwas0.8µm,thebumpsweresmoothlyconnected,toformalineofbumps.WhenDwas5.0µm,thatis,whenDwassufficientlylargerthanthebumpdiameter,thebumpshadisolatedpeaks.694AppliedPhysicsA–MaterialsScienceProcessingFIGURE5AFMobservationoflinearlyarrangedbumpsformedunderE3.5µJ,Z6.0µm,R1Hz,andD2.0µm.aandbaretheprofilesacrossandalongthelinearlyarrangedbumps.Theverticalrangeoftheprofilesis±250nmanditshorizontallengthis60µmFIGURE6Surfacestructuresformedundervariousconditions.ThesameirradiationenergyofE2.1µJwasused.Inaandb,Z6.0µmandR1Hz,andthepulseirradiationspatialintervalsofaD0.8µmandbD5.0µmweredifferent.Incandd,R1HzandD0.5µm,andthefocuspositionsofcZ6.0µmanddZ3.0µmweredifferent.Ineandf,Z6.0µmandD0.5µm,andtherepetitionratesofeR2HzandfR5Hzweredifferent.TheAFMimagesare88µm2Tofabricatebumpswithhighdensity,ZandRwerecarefullychosen,inadditiontoEandD.WiththeirradiationconditionsZ6.0µm,E2.1µJ,D0.5µm,andR1Hz,asmoothlineofbumpswithauniformheightwasFIGURE7Bubblesgeneratedonthewater/glassinterfaceobservedwithaCCDimagesensor,whentheelapsedtimeat2/30,b8/30,c12/30,andd13/30s.eThedisappearancetimeofbubblesforthepulseenergy.Threemeasurementsateachpulseenergyareindicatedasthecenterfilledcircleandthebarsformed,asshowninFig.6c.Thewidthandheightofthelineofthebumpswereabout4.2µmand60nm,respectively.WiththeirradiationconditionsZ3.0µm,E2.1µJ,D0.5µm,andR1Hz,manysubmicrometersizedspikeswereformed,asshowninFig.6d.Theirregularlyshapedstructureswereformedasaresultofasinglebumpformedbythepreviouslaserpulsebeingdestroyedbythenextlaserpulse,becausetheenergydensityattheglasssurfaceenabledablationoftheformedbumpwhenthefocuspositionwasneartheglasssurface.SelectionoftherepetitionrateRwasalsoimportantinforminghighdensitybumps.Figure6eandfshowAFMimagesofastructureprocessedwithR2and5Hz,respectively.TheotherconditionsZ6.0µm,E2.1µJ,andD0.5µmwerethesameasthoseintheexperimentshowninFig.6c.ThisdifferencedependingonlyonRwasstronglyrelatedtothedisappearancetimeofthecavitationbubblegeneratedbyplasmaformationatthewater/glassinterface.Figure7a–dshowthebubblegeneratedatthewater/glassinterfaceobservedwiththeCCDimagesensorwhenE4.8µJandZ0.0µm.Astheexpansionofabubbleislessthan∼10µs28,itcannotbecapturedwithanordinaryCCDimagesensor.Onlythecontractionofabubblewasobserved,asshowninFig.7a–c.InFig.7d,thecircularpatternwasthelaserprocessedstructure,becauseitdidntchangetemporally.Theelapsedtimet0wasdefinedasthetimewhenthebubblewasobserved.ThedisappearancetimeofthebubbleTd

注意事项

本文(外文翻译--在水中利用高密度飞秒激光对玻璃表面进行加工 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5