欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--在水中利用高密度飞秒激光对玻璃表面进行加工 英文版.pdf

    • 资源ID:95866       资源大小:367.79KB        全文页数:5页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--在水中利用高密度飞秒激光对玻璃表面进行加工 英文版.pdf

    DOI:10.1007/s00339-007-3930-zAppl.Phys.A87,691695(2007)MaterialsScience&ProcessingAppliedPhysicsAy.hayasakia117d.kawamuraHigh-densitybumpformationonaglasssurfaceusingfemtosecondlaserprocessinginwaterDepartmentofOpticalScienceandTechnology,FacultyofEngineering,TheUniversityofTokushima,2-1Minamijosanjima-cho,Tokushima770-8506,JapanReceived:13November2006/Accepted:29January2007Publishedonline:29March2007©Springer-Verlag2007ABSTRACTMicrometer-sizedbumpswereformedonaglasssurfaceusingafocusedfemtosecondlaserprocessinginwater.Thebumpswereformedoverawiderangesofpulseirradiationparameters,includingirradiationenergyandfocusposition.Thebumpsexhibitedawidevarietyofmorphologiesandsizesde-pendingontheparameters.Theuseofaliquid,namelyheavywater,whichreturnsafterbreakdownandcavitationbubblefor-mation,enabledustofabricatebumpswithhighspatialdensity,whichisnotpossibleusingasolidcoatingthatisablated.Ade-siredarrangementofbumpsonaglasssurfacewasfabricatedbytuningtheprocessingtimeintervaltobemorethanthedisap-pearancetimeofabubble,generatedbyfocusingafemtosecondlaserpulsenearthewater/glassinterface.PACS42.62.Cf;42.70.Ce;52.38.Mf;78.47.+p;79.20.Ds1IntroductionFemtosecondlasersarepowerfultoolsformicro-andnano-structuringoftransparentmaterialsbecausetheycanprocesswithhighspatialresolutionresultingfrommul-tiplephotonabsorption,andreducedthermaldamageduetotheultra-shortinteractiontimebetweenthelaserpulseandthematerial,aswellasvariousphysicalphenomenacausedbytheultra-highintensityofthelaserpulse111.Fem-tosecondlaserprocessingisbeingincreasinglyappliedtothedevelopmentofthree-dimensionalopticalandfluidicde-vices7,8,1014.Asthemorphologyoftheprocessedtrans-parentmaterialisrelatedtothethermaleffectsofvaporizationanddissolutionduetothermaldiffusion,interactionwiththehotvaporplume,andalow-energy-densityregioninthelaserpulse,itishighlysensitivetonotonlythephysicalproper-tiesofthematerial,butalsotothelaserirradiationparameters,suchasthewavelength,pulseduration,pulseenergy,numer-icalapertureofthefocusedbeam,andthefocusposition.Inparticular,whenafemtosecondlaserpulseisfocusednearthesurfaceofatransparentmaterial,adifferenceinthefocuspos-itiongivesrisetoalargedifferenceinthesurfacemorphology.a117Fax:+81-88-656-9435,E-mail:hayasakiopt.tokushima-u.ac.jpThetypicalsurfacemorphologyofglassprocessedbyatightly-focusedfemtosecondlaserpulse,changesfromacavitytoabumpwhenthefocuspositionchangesfromtheoutsidetotheinsideoftheglass.Thecavityissurroundedbyaring-shapedprotrusionandscattereddebris.Theirsize,andtheamountofdebrisstronglydependsonthefocuspos-itionalso.Abumpwithadiameterfromseveralhundrednanometerstoseveralmicrometersisformedbymeltingtheglasssurfacewiththemeltedglassbeingpushedupbyami-croexplosioninsidetheglass1520.Duetotherangesoffocalpositionandirradiationpulseenergy,thesurfacemelt-ingandtheinternalmicroexplosionoccursimultaneouslyandthebumpsformedareverynarrow.Bumpstypicallyexhibitssmallvariationinsizeandstructure.Inapreviousstudy,wefoundthatatransparentcoatingontheglassfordecreasingtheamountofdebrisattachedtotheglasssurfaceallowsbumpformationoveraslightlywiderrangeoffocalpositionscomparedtobareglass,whenthecoatingthicknessissufficientlylargerthanthelengthofthefocalvolume19,21.Furthermore,wefoundthatwhenthecoatingthicknessisshorterthanthelengthofthefo-calvolume,thatis,whenthecoatingsurfaceisablatedbyasinglelaserpulsefocusedattheboundarybetweenthetransparentcoatingandtheglass,bumpswereproducedoverafairlywiderangeoffocuspositionscomparedtousingathickcoating20.Fromthoseinvestigations,webelievethattheamountofcoatingmaterialablatedinthefocalvol-ume,whichdependsonthecoatingthickness,affectsthestrengthofashieldingeffectoftheplasmageneratedwhenablatingthecoating.Asaresult,thesizeandstructureoftheformedbumpcanbechanged.Thetransparentcoatingmethodhasthedisadvantagethatthespatialdensityofthebumpsislimitedtoseveralmicrometersbecauseofablationofthetransparentcoating.Inordertoachievecontrollablefabri-cationofbumpswithahighdensity,itispossibletouseliquidonthetransparentmaterialinplaceofthetransparentcoatingduringfemtosecondlaserprocessing,becausetheliquidnatu-rallyreturnsafterbreakdownandbubbleformation.Fabrica-tionofcomplexstructuresonasiliconsurfacebyfemtosecondlaserprocessinginwaterhasbeendemonstrated2224.Inthispaper,wedemonstrateformationofhigh-densitymicrometer-sizedbumpsbyfemtosecondlaserprocessinginwater.InSect.2,wedescribetheexperimentalsetupand692AppliedPhysicsAMaterialsScience&Processingprocedure.InSect.3,wedescribetheexperimentalresults.Weinvestigatedtheeffectsofirradiationparameters,includ-ingenergyandfocalposition,onthemorphologyandsizeofthebumps.Wedemonstratedthat,bytuningtheprocess-ingtimeintervaltobemorethanthedisappearancetimeofabubble2528generatedbyafemtosecondlaserpulsefo-cusednearthewater/glassinterface,wecouldfabricateade-siredstructureontheglasssurface,composedofhigh-densitybumps.InSect.4,weconcludeourstudy.2ExperimentalsetupandprocedureTheexperimentalsetupconsistedofanamplifiedfemtosecondlaserandanopticalmicroscopeandisshowninFig.1.Itwasthesameasthesetupusedinourpre-viouswork19,20.Theamplifiedfemtosecondlaserpro-ducedpulseswithapeakwavelengthof800nm,adurationof150fs,andamaximumrepetitionrateof1kHz.TheirradiationpulseenergyEatthesamplewascontrolledbyneutraldensityfilters,andisgivenbytheproductoftheenergymeasuredbeforeintroducingthelaserpulseintotheopticalmicroscope(Olympus,IX70)andthetransmittanceoftheop-ticalmicroscope,includinga40×objectivelens(numericalaperture,NA=0.65).Thetransmittanceofthemicroscopewas0.69.Theprocessedareawasobservedundertransmittedilluminationbyausualcharge-coupleddevice(CCD)imagesensorwiththeframerateof30frames/s.ThefocuspositionZofthelaserpulsewasdefinedasthedistancemovedalongtheopticalaxisbythemicroscopestage.Thezeroposition(Z=0)wasdefinedasthepositionwhereastructurewasformedontheglasssurfacebyirradiationofalaserpulsewithnearablationthresholdenergy.ThestructureofthesampleisalsoshowninFig.1.Thesamplewaspreparedasfollows.Fourordinarymicroscopecoverslips(Matsunami)whichweresubjectedtoultrasoniccleaninginethanolandpurewaterwereprepared.TheywereFIGURE1Experimentalsetupandthestructureofthesample.Thespacerglasseswereremovedwhentheprocessingwasperformedatargetglass,awindowglassforsandwichingwater,andtwospacerglasseswithathicknessof130µm.Poly-methylmethacrylate(PMMA)withtoluenesolventwasusedtoformwallsonthewindowglass.Aftersufficientlyevaporatingthesolventthespacerglasseswereremoved,andasmallcham-berwithasidelengthof1015mmcomposedofthePMMAwallsontheglasswasformed.WaterwasdroppedinthesmallchamberandthetargetglasswasfixedonthechamberwithasmallamountofthePMMAthatwasusedasaglue.Inthisexperiment,deuteriumoxide(heavywater,hereafterreferredtosimplyas“water”)wasusedbecauseofitslowlinearabsorptionaroundthewavelengthof800nm.Afterpro-cessing,thetargetglasswasremovedfromthechamberandsubjectedtoultrasoniccleaninginpurewaterandethanol.Thesurfacestructureoftheprocessedareawasobservedwithanatomicforcemicroscope(AFM;DigitalInstruments,Di-mension3000).3ExperimentalresultsFigure2showsstructuresprocessedinwateroverarangeofZfrom4.0to12.0µmwhentheenergyEwas2.1µJ.Figure2aandbshowanAFMimageanditscorres-pondingprofile,whoseverticalrangeis±500nm.Figure2canddshowtopandsideviewsoftheprocessedareaobservedwiththetransmissionopticalmicroscope.Figure2eshowsthediameterandheightofthebumps,whichwereobtainedfromtheAFMobservation,andthelengthofavoid,whichFIGURE2(a)AFMimagesoftheprocessedareaand(b)theirprofiles.Theirradiationenergywas2.1µJ.Theverticalrangeis±500nm.(c)Topand(d)sideviewsobservedwithatransmissionopticalmicroscope.(e)Diameterandheightofbumpsversusfocusposition,andthelengthofvoidsformedintheglassversusfocuspositionHAYASAKIetal.High-densitybumpformationonaglasssurfaceusingfemtosecondlaserprocessinginwater693wasobtainedfromasideviewobservation.ThebumpswereformedontheglasssurfaceoverawiderangeofZ,from4.0to8.0µm.AsZincreased,theheightanddiameterofthebumpsincreased.WhenZwas6.0µm,thebumphadamax-imumheightof400nmandadiameterof3.6µm.WhenZwas8.0µm,alowbumpwithaheightof50nmwasformed.WhenZwasgreaterthan8.0µm,voidswereformedinsidetheglassandnostructurewasformedontheglasssurface.ThelengthofthevoidunderthebumpalsoincreasedasZincreased.ThevoidsformedwhenZwas4to12µmwerenearlyequalinlength.UndermoredetailedobservationinthesideviewshowninFig.2d,wefoundthatthevoidshaddif-ferentgraylevelswhenZwasbetween6.0and8.0µm.ThedarkhueofthevoidsunderthehighbumpsatZ=3.0µmandZ=6.0µmwasdarkerthanthoseofthevoidsformedcom-pletelyinsidetheglass.Weexpectedthevoidinthehighbumptohavelowerdensitythantheothers,becauseaninternalmi-croexplosiondisplacedtheglassmaterialfromthefocalpointandformedthehighbump,thuscausingadecreaseindensity.Thisbumpformationphenomenonisthesameasthatob-servedinourpreviousstudyinwhichglasshavingatrans-parentpolymercoatingwasprocessed.Theprincipleofbumpformationinthatstudywasbasedonthesuppressionofthematerialemissionfromtheglasssurfacebyashieldingeffectofplasmageneratedbyablationofthepolymerandbyphys-icalblockingofthepolymer.Onedifferenceinthepresentstudyisthatthebumpformationintheglassprocessedinwa-teroccursoverawiderrangeofZ,asshowninFig.3.Theirradiationbeamparameterswerealmostthesameasourpre-viousexperiments(showninFig.3in19).TheirradiationenergywasE=0.69µJ.Whenprocessingglasswithapoly-mercoating,bumpformationwasobservedwhenZwas1.0to4.0µm20whereaswhenprocessinginwater,bumpfor-mationwasobservedwhenZwas4.0to7.0µm.Themainreasonforthedifferenceisthatthephysicalblockingofwa-terisweakerthanthatofthepolymercoating.Thisisfurthersupportedbytheresultsforstructuresprocessedwithhighpulseenergies,aboveseveralmicrojoules,discussedinthenextparagraph.Figure4showsAFMimagesoftheprocessedstructuresforvariousenergiesEwhenZ=0.BumpswereformedwhenEwas0.17to6.9µJ,andtheirstructuresdrasticallychangeddependingonE.Thediameterandheightofthebumpin-creasedasEincreasedto4.1µJ.WhenEwas4.1µJ,thediameterwas5.1µmandtheheightwas1.57µm.Withfur-therincreaseofE,bothdimensionsdecreased.WhenE<2.1µJ,therewaslittledebrisaroundtheperipheryofthebump.Although,whenE2.1µJ,debriswasdistributedaroundtheperiphery,andtheamountofdebrisincreasedasEincreased.ThescatteredregionofthedebrisisindicatedbythesquaresonthesolidlinesinFig.4.Processinginwa-terproducedmorescattereddebrisaroundthebumpthanprocessingwithanappliedpolymercoating.Thisfurthersup-portstheassertionthatwaterhadweakerphysicalblockingthanthepolymercoating.Mostofthedebriswasnotremovedbyultrasoniccleaninginwater.Therefore,theglassmaterialscatteredintheliquidstateattheglass/waterinterfacead-heredtotheglasssurfaceandsolidified.Figure5showbumpsarrangedinastraightlinewithhighdensity.Thelinearly-arrangedbumpswereprocessedbyir-FIGURE3Diameterandheightofbumpsversusfocusposition.Ewas0.69µJFIGURE4AFMimagesofthestructuresprocessedwith(a)E=0.69µJ,(b)E=2.8µJ,(c)E=4.1µJ,(d)E=4.8µJ,(e)E=5.5µJand(f)E=6.9µJ.(g)Diameterandheightofbumpanddebrisdiameterversusirradiationenergyradiatingthelaserpulsesataspatialintervalshorterthanthediameterofasinglebump.Inthiscase,thespatialintervalDwassetto2.0µm,undertheconditionthatasinglebumpwithadiameterof3.6µmandaheightof56nmwasformedwhenEwas3.5µJandZwas6.0µm.Thestructurewasprocessedbyscanningthemicroscopestagesothatasinglepulsewasirradiatedateachlocation,repeatedatarepetitionrateRof1Hz.Theshapeofthelinearly-arrangedbumpswascontrolledbychangingD,asshowninFig.6aandb.WhenDwas0.8µm,thebumpsweresmoothlyconnected,toformalineofbumps.WhenDwas5.0µm,thatis,whenDwassuffi-cientlylargerthanthebumpdiameter,thebumpshadisolatedpeaks.694AppliedPhysicsAMaterialsScience&ProcessingFIGURE5AFMobservationoflinearly-arrangedbumpsformedunderE=3.5µJ,Z=6.0µm,R=1Hz,andD=2.0µm.(a)and(b)arethepro-filesacrossandalongthelinearly-arrangedbumps.Theverticalrangeoftheprofilesis±250nmanditshorizontallengthis60µmFIGURE6Surfacestructuresformedundervariousconditions.ThesameirradiationenergyofE=2.1µJwasused.In(a)and(b),Z=6.0µmandR=1Hz,andthepulseirradiationspatialintervalsof(a)D=0.8µmand(b)D=5.0µmweredifferent.In(c)and(d),R=1HzandD=0.5µm,andthefocuspositionsof(c)Z=6.0µmand(d)Z=3.0µmweredifferent.In(e)and(f),Z=6.0µmandD=0.5µm,andtherepetitionratesof(e)R=2Hzand(f)R=5Hzweredifferent.TheAFMimagesare8×8µm2Tofabricatebumpswithhighdensity,ZandRwerecarefullychosen,inadditiontoEandD.Withtheirradi-ationconditionsZ=6.0µm,E=2.1µJ,D=0.5µm,andR=1Hz,asmoothlineofbumpswithauniformheightwasFIGURE7Bubblesgeneratedonthewater/glassinterfaceobservedwithaCCDimagesensor,whentheelapsedtime(a)t=2/30,(b)8/30,(c)12/30,and(d)13/30s.(e)Thedisappearancetimeofbubblesforthepulseenergy.Threemeasurementsateachpulseenergyareindicatedasthecenterfilledcircleandthebarsformed,asshowninFig.6c.Thewidthandheightofthelineofthebumpswereabout4.2µmand60nm,respectively.WiththeirradiationconditionsZ=3.0µm,E=2.1µJ,D=0.5µm,andR=1Hz,manysub-micrometersizedspikeswereformed,asshowninFig.6d.Theirregularlyshapedstructureswereformedasaresultofasinglebumpformedbythepreviouslaserpulsebeingdestroyedbythenextlaserpulse,becausetheenergydensityattheglasssurfaceenabledablationoftheformedbumpwhenthefocuspositionwasneartheglasssurface.SelectionoftherepetitionrateRwasalsoimportantinforminghigh-densitybumps.Figure6eandfshowAFMim-agesofastructureprocessedwithR=2and5Hz,respec-tively.Theotherconditions(Z=6.0µm,E=2.1µJ,andD=0.5µm)werethesameasthoseintheexperimentshowninFig.6c.ThisdifferencedependingonlyonRwasstronglyrelatedtothedisappearancetimeofthecavitationbubblegen-eratedbyplasmaformationatthewater/glassinterface.Figure7adshowthebubblegeneratedatthewater/glassinterfaceobservedwiththeCCDimagesensorwhenE=4.8µJandZ=0.0µm.Astheexpansionofabubbleislessthan10µs28,itcannotbecapturedwithanordinaryCCDimagesensor.Onlythecontractionofabubblewasobserved,asshowninFig.7ac.InFig.7d,thecircularpatternwasthelaser-processedstructure,becauseitdidntchangetempo-rally.Theelapsedtimet=0wasdefinedasthetimewhenthebubblewasobserved.ThedisappearancetimeofthebubbleTd

    注意事项

    本文(外文翻译--在水中利用高密度飞秒激光对玻璃表面进行加工 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!