欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译风力发电中的自我激励与谐波.pdf

    • 资源ID:96632       资源大小:755.90KB        全文页数:7页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译风力发电中的自我激励与谐波.pdf

    rugged,egenerationcurrguidelines2PowerSystemNetworkDescriptionbinecanenterself-excitationoperation.Thevoltageandfre-quencyduringoff-gridoperationaredeterminedbythebalancebetweenthesystemsreactiveandrealpower.Downloaded28Mar2008to211.82.100.20.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmWeinvestigateaverysimplepowersystemnetworkconsistingofone1.5MW,fixed-speedwindturbinewithaninductiongen-eratorconnectedtoalinefeederviaatransformerH208492MVA,3phase,60Hz,690V/12kVH20850.Thelow-speedshaftoperatesat22.5rpm,andthegeneratorrotorspeedis1200rpmatitssyn-chronousspeed.AdiagramrepresentingthissystemisshowninFig.1.Thepowersystemcomponentsanalyzedincludethefollowing:AninfinitebusandalonglineconnectingthewindturbinetothesubstationAtransformeratthepadmountOnepotentialproblemarisingfromself-excitationisthesafetyaspect.Becausethegeneratorisstillgeneratingvoltage,itmaycompromisethesafetyofthepersonnelinspectingorrepairingthelineorgenerator.Anotherpotentialproblemisthatthegeneratorsoperatingvoltageandfrequencymayvary.Thus,ifsensitiveequipmentisconnectedtothegeneratorduringself-excitation,thatequipmentmaybedamagedbyover/undervoltageandover/underfrequencyoperation.Inspiteofthedisadvantagesofoper-atingtheinductiongeneratorinself-excitation,somepeopleusethismodefordynamicbrakingtohelpcontroltherotorspeedduringanemergencysuchasagridlosscondition.WiththeproperchoiceofcapacitanceandresistorloadH20849todumptheenergyfromthewindturbineH20850,self-excitationcanbeusedtomaintainthewindturbineatasafeoperatingspeedduringgridlossandme-chanicalbrakemalfunctions.Theequationsgoverningthesystemcanbesimplifiedbylook-ingattheimpedanceoradmittanceoftheinductionmachine.ToContributedbytheSolarEnergyDivisionofTHEAMERICANSOCIETYOFMECHANI-CALENGINEERSforpublicationintheASMEJOURNALOFSOLARENERGYENGINEERING.Manuscriptreceived:February28,2005;revisedreceived:July22,2005.AssociateEditor:DaleBerg.JournalofSolarEnergyEngineeringNOVEMBER2005,Vol.127/581Copyright©2005byASMEE.MuljadiC.P.ButterfieldNationalRenewableEnergyLaboratory,Golden,Colorado80401H.RomanowitzOakCreekEnergySystemsInc.,Mojave,California93501R.YingerSouthernCaliforniaEdison,Rosemead,California91770Self-ExcitationWindPowerTraditionalwindturbinestheyareinexpensive,tiongeneratorsrequirisoftenused.Becausethecapacitorcompensationamongthewindturbine,tantaspectsofwindcontentintheoutputenaandgivessomeH20851DOI:10.1115/1.20475901IntroductionManyoftodaysoperatingwindturbineshavefixedspeedin-ductiongeneratorsthatareveryreliable,rugged,andlowcost.Duringnormaloperation,aninductionmachinerequiresreactivepowerfromthegridatalltimes.Thus,thegeneralpracticeistocompensatereactivepowerlocallyatthewindturbineandatthepointofcommoncouplingwherethewindfarminterfaceswiththeoutsideworld.Themostcommonlyusedreactivepowercom-pensationiscapacitorcompensation.Itisstatic,lowcost,andreadilyavailableindifferentsizes.Differentsizesofcapacitorsaregenerallyneededfordifferentlevelsofgeneration.Abankofparallelcapacitorsisswitchedinandouttoadjustthelevelofcompensation.Withpropercompensation,thepowerfactorofthewindturbinecanbeimprovedsignificantly,thusimprovingover-allefficiencyandvoltageregulation.Ontheotherhand,insuffi-cientreactivepowercompensationcanleadtovoltagecollapseandinstabilityofthepowersystem,especiallyinaweakgridenvironment.Althoughreactivepowercompensationcanbebeneficialtotheoveralloperationofwindturbines,weshouldbesurethecompen-sationisthepropersizeandprovidespropercontrol.Twoimpor-tantaspectsofcapacitorcompensation,self-excitationH208511,2H20852andharmonicsH208513,4H20852,arethesubjectsofthispaper.InSec.2,wedescribethepowersystemnetwork;inSec.3,wediscusstheself-excitationinafixedspeedwindturbine;andinSec.4,wediscussharmonics.Finally,ourconclusionsarepre-sentedinSec.5.andHarmonicsinGenerationarecommonlyequippedwithinductiongeneratorsbecauseandrequireverylittlemaintenance.Unfortunately,induc-reactivepowerfromthegridtooperate;capacitorcompensationthelevelofrequiredreactivepowervarieswiththeoutputpower,mustbeadjustedastheoutputpowervaries.Theinteractionsthepowernetwork,andthecapacitorcompensationareimpor-thatmayresultinself-excitationandhigherharmonicent.Thispaperexaminesthefactorsthatcontrolthesephenom-onhowtheycanbecontrolledoreliminated.H20852Capacitorsconnectedinthelowvoltagesideofthetrans-formerAninductiongeneratorFortheself-excitation,wefocusontheturbineandthecapaci-torcompensationonlyH20849therighthalfofFig.1H20850.Forharmonicanalysis,weconsidertheentirenetworkshowninFig.1.3Self-Excitation3.1TheNatureofSelf-ExcitationinanInductionGenerator.Self-excitationisaresultoftheinteractionsamongtheinductiongenerator,capacitorcompensation,electricalload,andmagneticsaturation.Thissectioninvestigatestheself-excitationprocessinanoff-gridinductiongenerator;knowingthelimitsandtheboundariesofself-excitationoperationwillhelpustoeitherutilizeortoavoidself-excitation.Fixedcapacitorsarethemostcommonlyusedmethodofreac-tivepowercompensationinafixed-speedwindturbine.Aninduc-tiongeneratoralonecannotgenerateitsownreactivepower;itrequiresreactivepowerfromthegridtooperatenormally,andthegriddictatesthevoltageandfrequencyoftheinductiongenerator.Althoughself-excitationdoesnotoccurduringnormalgrid-connectedoperation,itcanoccurduringoff-gridoperation.Forexample,ifawindturbineoperatinginnormalmodebecomesdisconnectedfromthepowerlineduetoasuddenfaultordistur-banceinthelinefeeder,thecapacitorsconnectedtotheinductiongeneratorwillprovidereactivepowercompensation,andthetur-Downloaded28Mar2008to211.82.100.20.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmoperateinanisolatedfashion,thetotaladmittanceoftheinduc-tionmachineandtherestoftheconnectedloadmustbezero.Thevoltageofthesystemisdeterminedbythefluxandfrequencyofthesystem.Thus,itiseasiertostarttheanalysisfromanodeatoneendofthemagnetizingbranch.Notethattheterm“imped-ance”inthispaperistheconventionalimpedancedividedbythefrequency.Theterm“admittance”inthispapercorrespondstotheactualadmittancemultipliedbythefrequency.3.2Steady-StateRepresentation.Thesteady-stateanalysisisimportanttounderstandtheconditionsrequiredtosustainortodiminishself-excitation.Asexplainedabove,self-excitationcanbeagoodthingorabadthing,dependingonhowweencounterthesituation.Figure2showsanequivalentcircuitofacapacitor-compensatedinductiongenerator.Asmentionedabove,self-excitationoperationrequiresthatthebalanceofbothrealandreactivepowermustbemaintained.EquationH208491H20850givesthetotaladmittanceofthesystemshowninFig.2:YS+YMH11032+YRH11032=0,H208491H20850whereYSH11005effectiveadmittancerepresentingthestatorwinding,thecapacitor,andtheloadseenbynodeMYMH11032H11005effectiveadmittancerepresentingthemagnetizingbranchasseenbynodeM,referredtothestatorsideYRH11032H11005effectiveadmittancerepresentingtherotorwindingasseenbynodeM,referredtothestatorsideH20849Note:thesuperscript“H11032”indicatesthatthevaluesarereferredtothestatorside.H20850EquationH208491H20850canbeexpandedintotheequationsforimaginaryandrealpartsasshowninEqs.H208492H20850andH208493H20850:R1L/H9275H20849R1L/H9275H208502+L1L2+RRH11032/SH9275H20849RRH11032/SH9275H208502+LLRH110322=0H208492H20850whereFig.1ThephysicaldiagramofthesystemunderinvestigationFig.2Perphaseequivalentcircuitofaninductiongeneratorunderself-excitationmode582/Vol.127,NOVEMBER20051LMH11032+L1LH20849R1L/H9275H208502+L1L2+LLRH11032H20849RRH11032/SH9275H208502+LLRH110322=0H208493H20850R1L=RS+RLH20849H9275CRLH208502+1L1L=LLSCRLH20849H9275CRLH208502+1RSH11005statorwindingresistanceLLSH11005statorwindingleakageinductanceRRH11032H11005rotorwindingresistanceLLRH11032H11005rotorwindingleakageinductanceLMH11032H11005statorwindingresistanceSH11005operatingslipH9275H11005operatingfrequencyRLH11005loadresistanceconnectedtotheterminalsCH11005capacitorcompensationR1LandL1Laretheeffectiveresistanceandinductance,respectively,representingthestatorwindingandtheloadasseenbynodeM.Oneimportantaspectofself-excitationisthemagnetizingchar-acteristicoftheinductiongenerator.Figure3showstherelation-shipbetweenthefluxlinkageandthemagnetizinginductanceforatypicalgenerator;anincreaseinthefluxlinkagebeyondacer-tainlevelreducestheeffectivemagnetizinginductanceLMH11032.Thisgraphcanbederivedfromtheexperimentallydeterminedno-loadcharacteristicoftheinductiongenerator.Tosolvetheaboveequations,wecanfixthecapacitorH20849CH20850andtheresistiveloadH20849RLH20850valuesandthenfindtheoperatingpointsfordifferentfrequencies.FromEq.H208492H20850,wecanfindtheoperatingslipataparticularfrequency.Then,fromEq.H208493H20850,wecanfindthecorrespondingmagnetizinginductanceLMH11032,and,fromFig.3,theoperatingfluxlinkageatthisfrequency.Theprocessisrepeatedfordifferentfrequencies.Asabaseline,weconsideracapacitorwithacapacitanceof3.8mFH20849milli-faradH20850connectedtothegeneratortoproduceap-proximatelyratedVARH20849voltamperereactiveH20850compensationforfullloadgenerationH20849highwindH20850.AloadresistanceofRL=1.0H9024isusedasthebaselineload.TheslipversusrotorspeedpresentedinFig.4showsthattheslipisroughlyconstantthroughoutthespeedrangeforaconstantloadresistance.Thecapacitancedoesnotaffecttheoperatingslipforaconstantloadresistance,butahigherresistanceH20849RLhigh=lowergeneratedpowerH20850correspondstoalowerslip.ThevoltageattheterminalsoftheinductiongeneratorH20849pre-sentedinFig.5H20850showstheimpactofchangesinthecapacitanceFig.3AtypicalmagnetizationcharacteristicTransactionsoftheASMEDownloaded28Mar2008to211.82.100.20.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmandloadresistance.AsshowninFig.5,theloadresistancedoesnotaffecttheterminalvoltage,especiallyatthehigherrpmH20849higherfrequencyH20850,butthecapacitancehasasignificantimpactonthevoltageprofileatthegeneratorterminals.Alargercapacitanceyieldslessvoltagevariationwithrotorspeed,whileasmallercapacitanceyieldsmorevoltagevariationwithrotorspeed.AsshowninFig.6,foragivencapacitance,changingtheeffectivevalueoftheloadresistancecanmodulatethetorque-speedcharacteristic.Theseconceptsofself-excitationcanbeexploitedtoprovidedynamicbrakingforawindturbineH20849asmentionedaboveH20850topre-venttheturbinefromrunningawaywhenitlosesitsconnectiontothegrid;onesimplyneedstochoosethecorrectvaluesforcapaci-tanceH20849ahighvalueH20850andloadresistancetomatchtheturbinepoweroutput.Appropriateoperationoverarangeofwindspeedscanbeachievedbyincorporatingavariableresistanceandadjust-ingitdependingonwindspeed.3.3DynamicBehavior.Thissectionexaminesthetransientbehaviorinself-excitationoperation.Wechooseavalueof3.8mFcapacitanceandaloadresistanceof1.0H9024forthissimu-lation.Theconstantdrivingtorqueissettobe4500Nm.Notethatthewindturbineaerodynamiccharacteristicandtheturbinecon-trolsystemarenotincludedinthissimulationbecausewearemoreinterestedintheself-excitationprocessitself.Thus,wefo-Fig.4Variationofslipforatypicalself-excitedinductiongeneratorFig.5TerminalvoltageversusrotorspeedfordifferentRLandCJournalofSolarEnergyEngineeringcusontheelectricalsideoftheequations.Figure7showstimeseriesoftherotorspeedandtheelectricaloutputpower.Inthiscase,theinductiongeneratorstartsfromrest.Thespeedincreasesuntilitreachesitsratedspeed.Itisinitiallyconnectedtothegridandatt=3.1secondsH20849sH20850,thegridisdiscon-nectedandtheinductiongeneratorentersself-excitationmode.Att=6.375s,thegeneratorisreconnectedtothegrid,terminatingtheself-excitation.Therotorspeedincreasesslightlyduringself-excitation,but,eventually,thegeneratortorquematchesthedriv-ingtorqueH208494500NmH20850,andtherotorspeedisstabilized.Whenthegeneratorisreconnectedtothegridwithoutsynchronization,thereisasuddenbrieftransientinthetorqueasthegeneratorresyn-chronizeswiththegrid.Oncethisoccurs,therotorspeedsettlesatthesamespeedasbeforethegriddisconnection.Figure8H20849aH20850plotsperphasestatorvoltage.Itshowsthatthestatorvoltageisoriginallythesameasthevoltageofthegridtowhichitisconnected.Duringtheself-excitationmodeH208493.1sH11021tH110216.375sH20850,whentherotorspeedincreasesasshowninFig.7,thevoltageincreasesandthefrequencyisabithigherthan60Hz.Thevoltageandthefrequencythenreturntotheratedvalueswhentheinductiongeneratorisreconnectedtothegrid.Figure8H20849bH20850isanexpansionofFig.8H20849aH20850betweent=3.0sandt=3.5stobetterillustratethechangeinthevoltagethatoccursduringthattransient.4HarmonicAnalysis4.1SimplifiedPerPhaseHigherHarmonicsRepresentation.Inordertomodeltheharmonicbehaviorofthenetwork,wereplacethepowernetworkshowninFig.1withtheperphaseequivalentcircuitshowninFig.9H20849aH20850.Inthiscircuitrepresentation,ahigherharmonicormultipleof60HzisdenotedFig.6Thegeneratortorquevs.rotorspeedfordifferentRLandCFig.7Thegeneratoroutputpowerandrotorspeedvs.timeNOVEMBER2005,Vol.127/5834.1.2Transformer.Weconsiderathree-phasetransformerwithleakagereactanceH20849XxfH20850of6percent.Becausethemagnetiz-Downloaded28Mar2008to211.82.100.20.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmbyh,wherehistheintegermultipleof60Hz.Thush=5indicatesthefifthharmonicH20849300HzH20850.Forwindturbineapplications,theinductiongenerator,transformer,andcapacitorsarethreephaseandconnectedineitherWyeorDeltaconfiguration,sotheevenharmonicsandthethirdharmonicdonotexistH208515,6H20852.Thatis,onlyh=5,7,11,13,17,.,etc.exist.4.1.1InfiniteBusandLineFeeder.Theinfinitebusandthelinefeederconnectingthewindturbinetothesubstationarerep-resentedbyasimpleTheveninrepresentationofthelargerpowersystemnetwork.Thus,weconsiderasimpleRLlinerepresenta-tion.Fig.8Theterminalvoltageversusthetime.aVoltageduringself-excitation.bVoltagebeforeandduringself-excitation,andafterreconnection.Fig.9Theperphaseequivalentcircuitofthesimplifiedmodelforharmonicanalysis584/Vol.127,NOVEMBER2005ingreactanceofalargetransformerisusuallyverylargecom-paredtotheleakagereactanceH20849XMH11032H11015H11009opencircuitH20850,onlytheleakagereactanceisconsidered.Assumingtheefficiencyofthetransformerisabout98percentatfullload,andthecopperlossisequaltothecorelossH20849ageneralassumptionforanefficient,largetransformerH20850,thecopperlossandcorelossareeachapproximately1percentor0.01perunit.Withthisassumption,wecancomputethecopperlossinperunitatfullloadcurrentH20849I1FullH6018Load=1.0perunitH20850,andwecandeterminethetotalwindingresistanceoftheprimaryandsecondarywindingH20849aboutonepercentinperunitH20850.4.1.3CapacitorCompensation.Switchedcapacitorsrepresentthecompensationofthewindturbine.Thewindturbinewecon-siderisequippedwithanadditional1.9MVARreactivepowercompensationH208491.5MVARabovethe400kVARsuppliedbythemanufacturerH20850.Thewindturbineiscompensatedatdifferentlevelsofcompensationdependingonthelevelofgeneration.Theca-pacitorisrepresentedbythecapacitanceCinserieswiththepara-siticresistanceH20849RcH20850,representingthelossesinthecapacitor.Thisresistanceisusuallyverysmallforagoodqualitycapacitor.4.1.4InductionGenerator.TheinductiongeneratorH208491.5MW,480V,60HzH20850usedforthiswindturbinecanberepre-sentedastheperphaseequivalentcircuitshownFig.9H20849aH20850.TheslipofaninductiongeneratoratanyharmonicfrequencyhcanbemodeledasSh=hH9275sH9275rhH9275sH208494H20850whereShH11005slipforhthharmonichH11005harmonicorderH9275sH11005synchronousspeedofthegeneratorH9275rH11005rotorspeedofthegeneratorThusforhigherharmonicsH20849fifthandhigherH20850theslipiscloseto1H20849Sh=1H20850andforpracticalpurposesisassumedtobe1.4.2SteadyStateAnalysis.Figure9H20849bH20850showsthesimplifiedequivalentcircuitoftheinterconnectedsystemrepresentinghigherharmonics.Notethatthemagnetizinginductanceofthetransformersandtheinductiongeneratorareassumedtobemuchlargerthantheleakagesandarenotincludedforhighharmoniccalculations.Inthissection,wedescribethecharacteristicsoftheequivalentcircuitshowninFig.9,examinetheimpactofvaryingthecapacitorsizeontheharmonicadmittance,andusetheresultofcalculationstoexplainwhyharmoniccontentsofthelinecur-rentchangeasthecapacitanceisvaried.Fromthesuperpositiontheorem,wecananalyzeacircuitwithonlyonesourceatatimewhiletheothersourcesareturnedoff.Forharmonicsanalysis,thefundamentalfrequencyvoltagesourcecanbeturnedoff.Inthiscase,thefundamentalfrequencyvoltagesourceH20849infinitebusH20850,Vs,isshortcircuited.Windfarmoperatorexperienceshowsusthatharmonicsoccurwhenthetransformeroperatesinthesaturationregion,thatis,athigherfluxlevelsasshowninFig.3.Duringtheoperationinthissaturationregion,theresultingcurrentcanbedistortedintoasharplypeakedsinusoidalcurrentduetothelargermagnetizingcurrentimbeddedintheprimarycurrent.Thisnonsinusoidalcur-rentcanexcitethenetworkatresonantfrequenciesofthenetwork.FromthecircuitdiagramwecancomputetheimpedanceH20849atanycapacitanceandharmonicfrequencyH20850seenbytheharmonicsource,Vh,withEq.H208495H20850,wherethesign“H20648”representsthewords“inparallelwith:”TransactionsoftheASME

    注意事项

    本文(外文翻译风力发电中的自我激励与谐波.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!