会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译--伪形的机械结构优化构形理论 英文版.pdf

  • 资源星级:
  • 资源大小:131.33KB   全文页数:6页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--伪形的机械结构优化构形理论 英文版.pdf

ORIGINALARTICLEPseudoconstructaltheoryforshapeoptimizationofmechanicalstructuresJeanLucMarcelinReceived10January2007/Accepted1May2007/Publishedonline25May2007SpringerVerlagLondonLimited2007AbstractThisworkgivessomeapplicationsofapseudoconstructaltechniqueforshapeoptimizationofmechanicalstructures.Inthepseudoconstructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedlikelimitationsoroptimizationconstraints.Twoapplicationsarepresentedthefirstonedealswiththeoptimizationoftheshapeofadropofwaterbyusingageneticalgorithmwiththepseudoconstructaltechnique,andthesecondonedealswiththeoptimizationoftheshapeofahydraulichammersrearbearing.KeywordsShapeoptimization.Constructal.Geneticalgorithms1IntroductionThispaperintroducesapseudoconstructalapproachtoshapeoptimizationbasedontheminimizationofthetotalpotentialenergy.Wearegoingtoshowthatminimizingthetotalpotentialenergyofastructuretofindtheoptimalshapemightbeagoodideainsomecases.Thereferencetotheconstructaltheorycanbejustifiedinsomewayforthefollowingreasons.AccordingtoBejan1,shapeandstructurespringfromthestruggleforbetterperformanceinbothengineeringandnaturetheobjectiveandconstraintsprincipleusedinengineeringisthesamemechanismfromwhichthegeometryinnaturalflowsystemsemerges.Bejan1startswiththedesignandoptimizationofengineeringsystemsanddiscoversadeterministicprincipleforthegenerationofgeometricforminnaturalsystems.Thisobservationisthebasisofthenewconstructaltheory.Optimaldistributionofimperfectionisdestinedtoremainimperfect.Thesystemworksbestwhenitsimperfectionsarespreadaroundsothatmoreandmoreinternalpointsarestressedasmuchasthehardestworkingparts.Seeminglyuniversalgeometricformsunitetheflowsystemsofengineeringandnature.Bejan1advancesanewtheoryinwhichheunabashedlyhintsthathislawisinthesameleagueasthesecondlawofthermodynamics,becauseasimplelawispurportedtopredictthegeometricformofanythingaliveonearth.Manyapplicationsoftheconstructaltheoryweredevelopedinfluidsmechanics,inparticularfortheoptimizationofflows2–10.Ontheotherhand,thereexists,toourknowledge,littleexamplesofapplicationsinsolidsorstructuresmechanics.Sowehaveatleasthalfofthereferencestopapersinfluiddynamicsmostofthesameauthor,becausetheconstructalmethodwasdevelopedfirstbythesameauthor,AdrianBejan,withonlyreferencestopapersinfluiddynamics.Theconstructaltheoryrestsontheassumptionthatallcreationsofnatureareoveralloptimalcomparedtothelawswhichcontroltheevolutionandtheadaptationofthenaturalsystems.Theconstructalprincipleconsistsofdistributingtheimperfectionsaswellaspossible,startingfromthesmallestscalestothelargest.Theconstructaltheoryworkswiththetotalmacroscopicstructurestartingfromtheassemblyofelementarystructures,bycomplyingwiththenaturalrulesofoptimaldistributionoftheimperfections.Theobjectiveistheresearchoflowercost.IntJAdvManufTechnol2008381–6DOI10.1007/s0017000710802J.L.MarcelinLaboratorieSolsSolidesStructures3S,UMRCNRSC5521,DomaineUniversitaire,BPn°53,38041GrenobleCedex9,FranceemailJeanLuc.Marcelinujfgrenoble.frHowever,aglobalandmacroscopicsolutionfortheoptimizationofmechanicalstructureshavingleastcostastheobjectivecanbeveryclosetotheconstructaltheory,fromwherethetermpseudoconstructalcomes.Theconstructaltheoryisapredictivetheory,withonlyonesingleprincipleofoptimizationfromwhichallrises.Thesameappliestothepseudoconstructalstepwhichisthesubjectofthisarticle.Thesingleprincipleofoptimizationofthepseudoconstructaltheoryistheminimizationoftotalpotentialenergy.Moreover,inourexamplespresentedhereafter,thepseudoconstructalprinciplewillbeassociatedwithageneticalgorithm,withtheresultthatouroptimizationwillbeveryclosetothenaturallaws.Theobjectiveofthispaperisthustoshowhowthepseudoconstructalstepcanapplytothemechanicsofthestructures,andinparticulartotheshapeoptimizationofmechanicalstructures.Thebasicideaisverysimpleamechanicalstructureinabalancedstatecorrespondstoaminimaltotalpotentialenergy.Inthesameway,anoptimalmechanicalstructuremustalsocorrespondtoaminimaltotalpotentialenergy,anditisthisobjectivewhichmustintervenefirstoveralltheothers.Itisthisideawhichwillbedevelopedinthisarticle.Twoexampleswillbepresentedthereafter.Theideatominimizetotalpotentialenergyinordertooptimizeamechanicalstructureisnotbrandnew.Manypapersalreadydealwiththisproblem.Whatisnew,istomakethisapproachsystematic.Theonlyobjectiveofoptimizationbecomestheminimizationofenergy.InGosling11,asimplemethodisproposedforthedifficultcaseofformfindingofcablenetandmembranestructures.Thismethodisbaseduponbasicenergyconcepts.Atruncatedstrainexpressionisusedtodefinethetotalpotentialenergy.ThefinalenergyformisminimizedusingthePowellalgorithm.InKannoandOhsaki12,theminimumprincipleofcomplementaryenergyisestablishedforcablenetworksinvolvingonlystresscomponentsasvariablesingeometricallynonlinearelasticity.Inordertoshowthestrongdualitybetweentheminimizationproblemsoftotalpotentialenergyandcomplementaryenergy,theconvexformulationsoftheseproblemsareinvestigated,whichcanbeembeddedintoaprimaldualpairofsecondorderprogrammingproblems.InTaroco13,shapesensitivityanalysisofanelasticsolidinequilibriumispresented.Thedomainandboundaryintegralexpressionsofthefirstandsecondordershapederivativesofthetotalpotentialenergyareestablished.InWarner14,anoptimaldesignproblemissolvedforanelasticrodhangingunderitsownweight.Thedistributionofthecrosssectionalareathatminimizesthetotalpotentialenergystoredinanequilibriumstateisfound.Thecompanionproblemofthedesignthatstoresthemaximumpotentialenergyunderthesameconstraintconditionsisalsosolved.InVentura15,theproblemofboundaryconditionsenforcementinmeshlessmethodsissolved.InVentura15,themovingleastsquaresapproximationisintroducedinthetotalpotentialenergyfunctionalfortheelasticsolidproblemandanaugmentedLagrangiantermisaddedtosatisfyessentialboundaryconditions.Theprincipleofminimizationoftotalpotentialenergyisinadditionatthebaseofthegeneralfiniteelementsformulation,withanaimoffindingtheunknownoptimalnodalfactors16.2ThemethodsusedInthepseudoconstructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedherelikelimitationsoroptimizationconstraints.Forexample,onemayhavelimitationsontheweight,ortonotexceedthevalueofastress.Theideawhichwillbedevelopedinthispaperisthusverysimple.Amechanicalstructureisdescribedbytwotypesofparametersvariablesknownasdiscretizationvariablesforexample,degreesoffreedomindisplacementforfiniteelementsmethod,andgeometricalvariablesofdesignforexampleparameterswhichmakeitpossibletodescribethemechanicalstructureshape.Totalpotentialenergydependsonanimplicitorexplicitwayofdeterminingdiscretizationanddesignvariablesatthesametime.Onethuswillcarryoutadoubleoptimizationofthemechanicalstructure,comparedtothediscretizationanddesignvariablestheobjectivebeingtominimizetotalpotentialenergyoverall.Clearly,theproblemofoptimizationofamechanicalstructurewillbeaddressedbythefollowingapproach–Objectivetominimizetotalpotentialenergy–Variablesofoptimizationconcurrentlydeterminingdiscretizationvariablesinthecaseofatraditionaluseofthefiniteelementmethodinmechanicsofstructures,anddesignvariablesdescribingtheshapeofthestructure–Optimizationlimitations–Weightorvolume–Displacementsorstrains–Stresses–FrequenciesTheproblemofoptimizationofamechanicalstructurewillbesolvedinthefollowingway,whilereiteratingon2IntJAdvManufTechnol2008381–6thesestages,ifneededaccordingtothenatureoftheproblemStage1Minimizationofthetotalpotentialenergyofthemechanicalstructurecomparedtotheonlydiscretizationvariablesofthestructuredegreesoffreedominfiniteelements.Itactshereasanoptimizationwithoutoptimizationlimitations.Theonlylimitationsatthisstageareofpurelymechanicalorigin,andrelatetotheboundaryconditionsandtotheexternaleffortsappliedtothestructure.Inthisstage1,thedesignvariablesremainfixed,andoneobtainstheimplicitorexplicitexpressionsofthedegreesoffreedomaccordingtothedesignvariableswhichcanbethevariableswhichmakeitpossibletodescribetheshape,inthecaseofashapeoptimization,forexample.Onewillseeintheexamplesofthefollowingpartthattheseexpressionscanbeexplicitorimplicitandwhichisthesuitabletreatmentfollowingthecases.Inthecaseofafiniteelementsmethodofcalculation,thisstage1isthebasisoffiniteelementscalculationtoobtainthedegreesoffreedomofthemechanicalstructure.Indeed,infiniteelements,displacementswiththenodesofthemechanicalstructuremeshareobtainedbyminimizationoftotalpotentialenergy16.Stage2Theexpressionsofthedegreesoffreedomofthemechanicalstructureaccordingtothedesignvariablesobtainedpreviouslyaretheninjectedintothetotalpotentialenergyofthemechanicalstructureonewillseeinthesecondexampleofthefollowingparthowonetreatsthecasewherethedegreesoffreedomareimplicitfunctionsofthedesignvariables.Onethenobtainsanexpressionofthetotalpotentialenergywhichdependsonlyonthedesignvariablesinexplicitorimplicitform.Stage3Onethencarriesoutasecondandnewminimizationofthetotalpotentialenergyobtainedintheprecedingform,butthistimecomparedtothedesignvariableswhilerespectingthetechnologicallimitationsortheoptimizationconstraintsoftheproblem.Thismethodcanbeappliedwithmoreorlessfacilityaccordingtothenatureoftheproblem.Itisclear,forexample,thatifthediscretizationvariablescanbeexpressedinanexplicitwayaccordingtothedesignvariables,thesettinginofstages2to3isimmediate,andwithoutiterations.Ifthediscretizationvariablescannotbeexpressedinanexplicitwayaccordingtothedesignvariables,orifthetopologyofthestructureisnotfixed,orifthebehaviorisnotlinear,itwillbenecessarytoproceedbysuccessiveiterationsonstages1to3.Itisthecaseoftheexamplespresentedinthefollowingpart,andonewillseeonthisoccasionwhichtypeofstrategyonecanadoptfortheseiterations.Tosummarize,inthepseudoconstructalstep,themainobjectiveisonlytheminimizationoftotalpotentialenergy,theotherpossibleobjectivesaretreatedlikelimitationsoroptimizationconstraints.TheoptimizationmethodusedforourexamplesisGAgeneticalgorithm,asdescribedin17.Exampleswithsimilarinstructionalvaluecanalsobefoundinmanybooks,e.g.in18.Thisevolutionarymethodisveryconvenientforourpseudoconstructalmethod.TheauthorhasworkedextensivelyinGAsandpublishedinsomereputedjournalsonthistopic19–31.AsthetopicofGAsisstillrelativelynewinthestructuralmechanicscommunity,weprovideheresomedetailsofexactlywhatisusedinthisGA.Amultiplepointcrossoverisusedratherthanasinglepointcrossover.Theselectionschemeusedateachgenerationisentirelystochastic.Forourexamples,thenumberofgenerationsisequaltothatusedforconvergence.TheresultsprovidedforourexampleswereconsistentlyreproducedbyusingdifferentseedsintheGA.Ithasbeenprovedthataratherstandardgeneticalgorithmissufficientforourexamples.3ExamplesEventhoughpotentialenergymaybeagoodmeasureforsomeoptimizations,potentialenergyisnotwhatgivestheshapetoawaterdroplet,nordefinestheoptimalshapeforahammer,whichiswhypotentialenergyisnottheonlyobjectivebuttheoptimizationproblemisamultiobjectiveoneandtheobjectivefunctionsforthetwoexamplesarethenclearlyformulated.3.1Example1optimizationoftheshapeofadropofwaterThefirsttestexampleistheoptimizationoftheshapeofadropofwaterFig.1.Thisproblemisequivalenttoanequalresistancetankcalculatedbythemembranetheory.Theobjectiveistoseeifthepseudoconstructaltheorygivesthenaturesoptimumdesign.3.1.1ThemethodsusedThegeometryofthedropofwaterisdefinedbythegeneratinglineofathinaxisymmetricshell.Thislineisdescribedbysuccessivestraightorcircularsegmentsdescribedinagivensenseanddefinedbyinputdataofmasterpointcoordinatesandradiusvalues.Theinitialdataareasetofnodalpointsconnectedbystraightsegments.EachnodalpointisidentifiedbyitstwocylindricalIntJAdvManufTechnol2008381–63coordinatesr,z,andarealRwhichrepresentstheradiusofthecircletangenttothetwostraightsegmentsintersectingatthepoint.Theothercomputercalculationsgivethecoordinatesofanyboundarypointandespeciallythetangentpointsnecessarytodefinethecirculararclengths.ThedesignofthedropofwaterisdescribedbythreearcsofcirclesasindicatedinFig.1.AnalysisisperformedbythefiniteelementmethodwiththreenodeparabolicelementsusingtheclassicalLoveKirchoffshelltheory.Anautomaticmeshgeneratorcreatesthefiniteelementmeshofeachstraightorcircularsegmentconsideredasamacrofiniteelement.Theobjectiveistoobtainashapeforthedropofwatergivingrisetoaminimumtotalpotentialenergywhichisthemainobjectiveandanequalresistancetankwhichistheonlyconstraintorlimitationoftheproblem.Infact,forthedropofwaterproblem,thegoalisamultiobjectiveone,thetwoobjectivesf1minimumtotalpotentialenergyandf2equalresistancearecombinedinamultiobjectiveff1f2.TheconstraintorlimitationoftheproblemistakenintoaccountbyapenalizationofthetotalpotentialenergyasindicatedinMarcelinetal.19.3.1.2TheresultsThedesignofthedropofwaterisdescribedbythreearcsofacircleFig.1.Theircentersandradiusarethedesignvariables.So,thereareninedesignvariablesr1,z1,R1forcircle1r2,z2,R2forcircle2andr3,z3,R3forcircle3.Inthegeneticalgorithm,eachofthesedesignvariablesiscodedbythreebinarydigits.ThetablesofcodingdecodingwillbethefollowingForr1Forz1ForR1Forr2Forz2ForR2Forr3Forz3ForR3Allthesebinarydigitsareputendtoendtoformachromosomelengthof27binarydigits.GAisrunforapopulationof30individuals,anumberofgenerationsof50,aprobabilityofcrossingof0.8,andaprobabilityofmutationof0.1.Theoptimalsolutioncorrespondstothechromosome100100011011010011100011101whichgivesthesolutionofFig.1,forwhich–r118,z117,andR1−0.065–r213.75,z212.2andR2−7.7–r34.1,z321.4andR3−21Itisveryclosetothenaturesoptimalsolutionfortheshapeofadropofwater.Themodelofthewaterdropmodelledbythreearcsofacircleisimperfect.However,theconstructaltheoryoptimizestheimperfections,and1052025r51020z3211515Fig.1Optimizationoftheshapeofadropofwater0000010100111001011101111616.51717.51818.51919.50000010100111001011101111515.51616.51717.51818.5000001010011100101110111−0.050−0.055−0.060−0.065−0.070−0.075−0.080−0.0850000010100111001011101111313.2513.513.751414.2514.514.750000010100111001011101111212.112.212.312.412.512.612.7000001010011100101110111−7.4−7.5−7.6−7.7−7.8−7.9−8−8.10000010100111001011101113.73.83.944.14.24.34.400000101001110010111011121.121.221.321.421.521.621.721.8000001010011100101110111−18.5−19−19.5−20−20.5−21−21.5−224IntJAdvManufTechnol2008381–6

注意事项

本文(外文翻译--伪形的机械结构优化构形理论 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5