会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译--其对称性揭示了行星齿轮减速器独立振荡 英文版.pdf

  • 资源星级:
  • 资源大小:144.72KB   全文页数:5页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--其对称性揭示了行星齿轮减速器独立振荡 英文版.pdf

12thIFToMMWorldCongress,BesançonFrance,June1821,2007RevealingofIndependentOscillationsinPlanetaryReducerGearowingtoitssymmetryL.BanakhYu.FedoseevMechanicalEngineeringResearchInstituteofRussianAcademyofSciencesMoscow,RussiaAbstractTheplanetaryreducer11gearisasymmetricsystem.Foritsoscillationanalysisthereisappliedthesymmetrygrouprepresentationtheory,whichwasgeneralizedformechanicalsystems.Itwasfoundthatduetoreducersymmetrytheoscillationsdecompositionhasarisen.Thereareindependentoscillationsclasses,suchasangularoscillationsofsolargearandepicyclesatellitesoscillationsinphasetransversaloscillationsofsolargearandepicyclesatellitesoscillationsinantiphase.Solargearandepicycleoscillationsinaphasedonotdependonangularsatellitesoscillations.Keywordsplanetaryreducer,symmetry,grouprepresentationtheory,independentoscillationsI.IntroductionItiswellknownthatattheoperationofplanetaryreducerthereareoscillationsofitselements,suchassolargear,epicycleandsatellites.Thisfactoressentiallyworsensaqualityofreduceroperation,andinsomecasescanresultintheircurvatureandbreakage.Aplentyofpapersaredevotedtothedynamicanalysisofgearreducers1.Basicallytherearecomputationalresearches.Inthegivenpapertheanalyticalapproachesforinvestigationofreducerdynamicsispresented.Theplanetaryreducerhasahighdegreeofsymmetry.Sothispropertywasusedandthegrouprepresentationtheorywasapplied.Applicationofthistheoryallowscarryingoutdeepenoughdynamicanalysis,usingsymmetrypropertiesonly.Forthispurposeitisnecessarytohavethedynamicalmodelwhichistakingintoaccountstiffnesscharacteristicsinlinkagesbetweenreducerelements.Themathematicalapparatusofthesymmetrygroupsrepresentationtheoryiswidelyusedinthequantummechanics,crystallographic,spectroscopy2,3,4.Theadvantagesofthisapproacharedifficultforoverestimating.Withitshelpitispossibletodefinewithexhaustivecompletenessthedynamicproperties,usingstructuresymmetryofsystemonlywithoutsolvingofmotionequations.Howeverintheclassicalmechanicsthisapproachisnotwidelyused.Itisresultfromsomeparticularfeaturesofmechanicalsystems.First,thereisanEmailbanlinbox.ruavailabilityofsolidswith6thdegreesoffreedom.Itisuncleartowhatsymmetrygrouptorelateasolidinorderthatsystemsymmetrymayberetained.Secondatrealdesignsmaybetechnologicalerrorsandmistakesatassembly,sothereisasmallasymmetryandthesystembecomesquasisymmetricFurtherthemechanicalsystemsconsistfromvarioussubsystemswithvarioussymmetrygroups.Inthisconnectionitisnecessarytohavemethodsfortheanalysisassymmetricandquasisymmetricmechanicalsystemsconsistingofvarioussubsystemsandsolids.Havingmadesomegeneralizations,thismathematicalapparatusformechanicalsystemsmaybeused.Forthispurposeweproposetoapplythegeneralizedprojectiveoperators5.Theseoperatorsarematrixesoftheappropriateorderinsteadofscalarasinphysics.Theuseofgeneralizedprojectiveoperatorsallowstakingintoaccountallabovementionedfeaturesofmechanicalsystems.Theapplicationoftheseoperatorstoinitialstiffnessmatrixleadstoitsdecompositiononindependentblockseachofthemcorrespondstoownoscillationclassinindependentsubspaces.Toaccountforthesolidssymmetry«theequivalentpoints»wereenteredthesepointsarechosenonsolidsothattheirdisplacementswerecompatibletoconnectionsandcorrespondedtogroupofsymmetryofallsystem.TheseoperatorsenablealsomaybeappliedwiththefiniteelementsmodelsFEM.II.Dynamicmodelofplanetaryreducer.Stiffnessmatrix.Themodelofaplanetaryreducerstepissubmittedonfig.16.ThestepconsistsfromsolargearS,itsmassandradiusareequalto11,mr.ItengagesintomeshwiththreesatellitesStii1,2,3itsmassesandradiusareidenticalandequalto22,mr.SatellitesinturnareengagedintomeshwithepicycleEp33,mrandtheyarefastenoncarrierbyelasticsupportwithrigidityh6.Therigidityofgearingsolargearsatellitesisequalto1h,thegearingepicyclesatellitesis3h,γisangleofgearing.12thIFToMMWorldCongress,BesançonFrance,June1821,2007Fig.1Planetaryreducerstep.Ssolargear,Эepicycle,1,2,3–satellitesSt.Letsconsideralloveragaintheplaneoscillationsofplanetaryreducersteptransversalx,yandangularϕoscillationswithoutthecasing.AstiffnessmatrixmayberepresentedinablockviewK123123123SSStSStSStЭЭStЭStЭStStStStKKKKKKKKKKK1Hereonthemaindiagonaltherearethestiffnesssubmatrixes3x3forappropriateelements,andoutsideofthemaindiagonaltherearestiffnesssubmatrixesofconnectionbetweentheseelements.Thereare15generalizedcoordinatesX,,,,,SSSEpEpEpxyxyϕϕ1113,,...StStStStxyϕϕTheconcreteviewoftheseblocksissubmittedinAppendix.Thus,thetotalorderofmatrixKis15x15.AninertiamatrixMisdiagonal.III.Introductionofequivalentpointsindynamicmodel.Operatorsofsymmetry.Byvirtueofsymmetryofsatellitesfasteningthissubsystemhassymmetrysuchas3Castriangle.Torevealsymmetry3CatmovingofsolargearSandepicycleEpweshallenterthecoordinates123,,lllonsolargearSinpointsofsatellitesfasteningfig.2..Fig.2EquivalentpointsonsolargearS.1,2,3,satellitesTheyareequivalentpoints.Theircoordinatesare11112221333121cos321sin31,2,3.SSiSSiSSirXrУiripiαβααβpiβαβϕ−−ℓℓℓ2orinmatrixformLAXAndanaloguesrelationsforequivalentpointsonepicycle,butinstead1rin2mustbewritten3r.Andlateronthesecoordinateofsolargearandepicyclewillbeusedinsteadx,yandϕ.Afterthatitispossibletocount,thatallcoordinatesofsystemshouldvaryaccordingtosymmetrygroup3Cand,hence,itispossibletoapplytheprojectiveoperatorofsymmetrytoallsystemelementsS,Ep,andalsotothreesatellitesStii1,2,3.fig.3Theorthonormalprojectiveoperatorgofsymmetryforpointgroup3Cisknownas2.Itisg11133312166611022−−−3Forthewholesystemtheprojectiveoperatormustberepresentedasblockdiagonalmatrix12thIFToMMWorldCongress,BesançonFrance,June1821,2007GStggg4HereeachsubmatrixcorrespondstoS,Ep,andalsotothreesatellitesStii1,2,3.SoBecausewehavethreeidenticalsatellitesandeachofthemhas3degreesoffreedom,iiStStxyandangular...iiStStϕϕ,thereforeitisnecessarytoentergeneralizeoperator33,4andtoconsiderStgasblockmatrixwheretheeachelementisdiagonalmatrix3х3,thatisitispossibletopresenteachelementasStg1,11EgEEEThustoinitialcoordinates,,,SEpxyϕofsolargearandepicycleconsistentlytwotransformationsareappliedAandG.AndresultingtransformationofaninitialmatrixKequalstoproductofoperatorsGA.ThisorthogonaltransformationanditlookslikeGАStgAgAg,wheregA223300100αββαByapplyingofthistransformationtomatrixК1,weshallreceiveКGАКGАtrSothecorrespondingtransformationsofcoordinatesandforcesareXGАХ,FGАtrF5AsaresulttheinitialmatrixK15х15isdividedon3independentblocks5x5and,lookinglike,12IIIIIKKKK6TheinertiamatrixMremainsdiagonalbecausematrixGAisorthogonalthereforetheindependenceofoscillationclassesdefinesmatrixКonly.IV.RevealingofindependentmotionsclassesatfornaturalandforcedoscillationsA.NaturaloscillationsFromtheviewofmatrix6itisseen,thatowingtosystemsymmetrythereisadecompositionofinitialmatrixK,and,hence,divisionofoscillationclassesandaswellasspaceofparameters.Theconcreterelationsforsubmatrixesin6showthattherearefollowingindependentoscillationsclassesIstclasssubspaceIsubmatrixIKangularoscillationofsolargearandepicycleoscillationsofsatellitesinaphase.Dimensionofthissubspaceisequalto5.Itsdeterminingparametersare12313612139,,,,,,,,.rrrhhhhrh2ndclasssubspaceIIsubmatrixes1IIK2IIKtransversaloscillationsofsolargearandepicycleoscillationsofsatellitesinanantiphase.SubspaceIIbreaksuptotwoidenticalsubmatrixes1IIKand2IIK5х5.Itmeansthatinsystemthereare5equalfrequencies.Itsdeterminingparametersare213679,,,,,,.rhhhhhγThus,takingintoaccountonlypropertiesofsymmetryitispossibletoreceivedeepenoughanalysisofdynamicpropertiesofsystemofaplanetaryreducer.Besidesitispossibletosimplifyalsoprocessofsystemoptimization.B.ForcedoscillationsAttheforcedoscillationstheuseoftheindependentoscillationclassesissuitableonlyintwocasesaifthepointsofapplicationoftheexternalforceshavethesametypeofsymmetry,asadesignhas,orbiftheyaredisposedaccordingtotheindependentclassesofoscillations.Really,thentransformation5bringaforcesvectorFintoaformcontainingzeroelementsorin1st,or2thsubspaces.Theanalysisoftherealloadingsforcesonareducer,shows,thatitisvalidifelementsdisbalancesarethesameаidenticalsatellitesdisbalancesdisbalanceofepicycleбidenticalsatellitesdisbalancesdisbalanceofsolargear.V.Thefurthermotionsdecomposition.ThefurtherdecompositionofsubspacesIandIIin6ispossibleonlyifthereareadditionalconditionsraisingatypeofsystemsymmetry.12thIFToMMWorldCongress,BesançonFrance,June1821,2007Theseconditions,inparticular,canbereceivedfromsimilaritysymmetryofsolargearandepicycle.Theylooklike1.EqualityofgearingstiffnesswithSandEp,i.e.12hh,2.EqualityofpartialfrequenciesforangularmotionsSandEpSEpϕϕνν,whence78hh,or3.EqualityofpartialfrequenciesattranversalmotionsofSandEp,,SEpxyxyνν,whenceh72h9.Sobyfulfillmentofconditions1,2or1,3theadditionalsymmetrytype2Cνisappearedreflectionsymmetry.Tothissymmetrygrouptheoperator2′Gor2′′Giscorresponded2′G113111131311rhrh−2′′G111113213112hh−TheapplicationoftheseoperatorstomatrixKpermittoachievethefurtherdecompositionofcorrespondingmatrixesandappropriatemotions.Reallytheymayhavesymmetricandantisymmetricoscillationclassesforsolargearandepicycle.Thusthecoordinatetransformationis11131311113131SEprrhSEprrh−XXXXXXAnd13121312SEphSEph′−XXXXXXBythiscoordinatetransformationthefollowingindependentmotiontypesarearisen′′⇒′′IIIKKKTheconcreterelationsforthesesubmatrixesshowthattherearefollowingindependentoscillationsclassesIsubspacematrix′IKangularoscillationsofsolargearSandepicycleEpinphasesatellitesStioscillationalongaxisxinphase,IIsubspacematrix′′IKangularoscillationsofsolargearSandepicycleEpinantiphasesatellitesStioscillationalongaxisyandaroundaxisφinphase.SimilarlyoccursdecompositionofsubspacesIIandmatrixes1IIK,2IIKbutinsteadofangularoscillationsSandEptherearetheirtransversaloscillationalonganaxisxory,andoscillationofsatellitesinanantiphase.AsshowstheanalysisofmatrixI′KtheoscillationsofSandEpinaphasedonotdependonangularoscillationofsatellitesφSt.FromanalysisofI′KandII′Kwenotice,thatath7h8h60azerorootmaybearisen.Thisoscillationtypemeansthefreeoscillationsofsatellitesnavigationatangularortranslationoscillationssolargearandepicycle.A.Forcedoscillations.Thechoiceofexitedforcesaccordingoneoftheseoscillationtypesdonotinducetheotheroscillationtypesbecausetheyareorthogonaleachother.TheexcitingforcesactinginsubspaceIIprovideanindependenceofsymmetricandantisymmetricoscillationsSandEpiftheyareappliedsimultaneouslytoSandEpandareequalonvalue.ThentransformationofexternalforcesFlookslike,submittedintable.

注意事项

本文(外文翻译--其对称性揭示了行星齿轮减速器独立振荡 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5