欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--可控注塑成型的发展趋势 英文版.pdf

    • 资源ID:97010       资源大小:185.98KB        全文页数:8页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--可控注塑成型的发展趋势 英文版.pdf

    1Copyright©1999byASMEProceedingsofMaterialsProcessingSymposium:1999ASMEInternationalMechanicalEngineeringCongress&ExpositionNovember14-19,1999,Nashville,TennesseeTOWARDSCONTROLLABILITYOFINJECTIONMOLDINGDavidKazmerDepartmentofMech.&Ind.EngineeringUniversityofMassachusettsAmherstDavidHatchDepartmentofMech.&Ind.EngineeringUniversityofMassachusettsAmherstABSTRACTProcesscontrolhasbeenrecognizedasanimportantmeansofimprovingtheperformanceandconsistencyofthermoplasticparts.However,nosinglecontrolstrategyorsystemdesignhasbeenuniversallyaccepted,andmoldingsystemscontinuetoproducedefectivecomponentsduringproduction.Thecapabilityoftheinjectionmoldingprocessislimitedbythethermalandflowdynamicsoftheheatedpolymermelt.Thispaperdiscussessomeofthedifficultiesposedbycomplexanddistributednatureoftheinjectionmoldingprocess.Theflowandthermaldynamicsoftheprocessareanalyzedwithrespecttotransportandrheology.Then,twonovelprocessingmethodsaredescribedtoenablein-cycleflow,pressure,andthermalcontrol.Simulationandexperimentalresultsdemonstrateeffectivenessoftheseinnovationstoincreasetheconsistencyandflexibilityinpolymerprocessing.Suchsystemdesignchangessimplifytherequisitecontrolstructureswhileimprovingtheprocessrobustnessandproductivity.INTRODUCTIONInjectionmoldingiscapableofproducingverycomplexcomponentstotightspecifications.Theprocessconsistsofseveralstages:plastication,injection,packing,cooling,andejection.Ininjectionmoldinganditsvariants(coinjection,injectioncompression,gasassistmolding,etc.),thermoplasticpelletsarefedintoarotatingscrewandmelted.Withahomogeneousmeltcollectedinfrontofthescrew,thescrewismovedforwardaxiallyatacontrolled,time-varyingvelocitytodrivethemeltintoanevacuatedcavity.Oncethemeltissolidifiedandthemoldedcomponentissufficientlyrigidtoberemoved,themoldisopenedandthepartisejectedwhilethenextcyclesthermoplasticmeltisplasticizedbythescrew.Cycletimesrangefromlessthanfoursecondsforcompactdiscstomorethanthreeminutesforautomotivecomponents.Controlofinjectionmoldingissignificantlychallengedbythenonlinearbehaviorofthepolymericmaterials,dynamicandcoupledprocessphysics,andconvolutedinteractionsbetweenthemoldgeometryandfinalproductqualityattributes.Arevisedsystemsviewofthemodernconventionalinjectionmoldingprocess1ispresentedinFig.1.Themachineparametersareindicatedontheleftsideofthefigure,andsomecommonmoldedpartmeasuresofqualityarelistedontheright.Inthisfigure,theprocessisdecomposedintofivedistinctbutcoupledstages.Theoutputofeachstagenotonlydirectlydeterminestheinitialconditionsofthenextstage,butalsoinfluencessomeofthefinalqualitiesofthemoldedpart.BarrelTemp1000PLASTICATIONINJECTIONPACKINGCOOLINGEJECTIONPROCESS/PARTQUALITYMeltPressureThermoplasticPelletsScrewPres0.02ScrewRPM0.5DistortionDimensionsClarityEconomicsResid.StressIntegrityEjectedPartRelaxationSolidifiedLayerDevelopmentStrengthAppearanceResidenceTimeMeltVolumeMeltTempMeltQualityInjectionVelocityProfile0.02MaximumInjectionPressure0.1PackingPressureProfile0.2PackingTime0.01MeltViscosityInletPressureFlowRateMoldCoolantTemperature200CoolingTime0.01MeltFrontVelocityMeltPresMeltDensityMeltTempSolidifiedLayerDevelopmentClampTonnageSolidifiedLayerDevelopmentCycleTimePartTempPartStrainPartStressEjectionStroke0.02EjectionVelocity0.01FlashMoldFailureShotSize0.02MACHINEINPUTSQUALITYATTRIBUTESSTATEVARIABLESFigure1:SystemsviewoftheinjectionmoldingprocessThincavityfillingofpolymermeltcorrespondstocreepingflow(Re<<1)whichiscoupledtoatemperaturefieldcharacterizedbyathincoldlayer(Pe>>1)surroundingahotcoreregion2.Asanexample,considerareferencevelocityof10cm/sec,referencethicknessof3mm,andaviscosityof100PaSeconds.TheReynoldsnumberbasedonthiscaseisverysmall,(10-3),indicatingthevalidityofthehighlyviscouscreepingflowassumption.Furthermore,theflowregionsareconsideredfullydeveloped,andboththeunsteadyandthegravitationalforceeffectscanbeignoredduetonegligiblelocalacceleration.Ontheotherhand,thethermaldiffusivity,2Copyright©1999byASME=k/Cp,oftypicalpolymermeltsis(10-3)cm3/sec,andthekinematicviscosity,=/=103cm2/sec;hence,thePrandtlnumberisabout(106)andPecletnumber,Pe=Re*Pr,is(103).Usingtheseassumptions,themass,momentum,andenergyequationsreducetothefollowingformsintheCartesiancoordinatesystem:()()0=+wzvxtrrr(1)xPzvz=h(2)222ghr&+=+zTkxTvtTCp(3)wherezandxarethethicknessandstreamwisedirections;visthevelocitycomponent;Pisthepressure;histheshearviscosity;r,Cp,andkarethethermalproperties;g&istheshearrate,and2gh&istheviscousheatingterm.Thesolutionofthepressurefieldininjectionmoldingisobtainedbycouplingthemassandmomentumequations.Generally,themassequationprovidesaconvergencecriterionforflowrateaboutwhichthemomentumequationisiterativelysolvedtoproduceanaccuratepressurefield.Foreachinstantoftime,allthenodalpressuresonthemesharesolvedsimultaneously.Iterationisrequiredtoupdatetheshearrate,viscosity,andflowrateestimatesuntilfullconvergenceisachieved.Foracompressibleflow,thenetmassfluxmustequalanymassgainsorlosseswithintheelement3.Thenecessarysystemofequationscanbedeveloped,assembled,andsolvedusingaconventionalGalerkinformulationforafixedmeshandtransientmeltfront.Suchasimulationhasbeendeveloped,andwillbeutilizedinassessingstrategiesforprocessdevelopmentalongwithexperimentalvalidation.PROCESSDEVELOPMENTAnoverviewofinjectionmoldingcontrolisshowninFig.2.Attheinnermostlevel,onlythemachineactuatorsareregulated.Thislevelofcontrolwillensureproperexecutionoftheprogrammedmachineinputs(Fig.1).Atthesecondlevel,statevariablessuchasmelttemperatureandmeltpressurearecontrolledtotrackpre-specifiedprofiles.Thiswillprovidemoreprecisecontrolofthestateofthemelt.Attheoutermostlevel,themachineinputsareadjustedtoimprovethequalityofthepartthroughbettersetpointsgivenqualityfeedback.MachineActuatorsProcessMachineControlSetPointControlStateVariableControlMachineFeedbackQualityFeedbackStateVariableFeedbackPartAttributesMachineInputsFigure2:SystemdiagramofinjectionmoldingcontrolWhilemachinecontrolisimportant,itisthepolymerstate(pressure,temperature,andmorphology)whichdirectlydeterminesthemoldedpartquality4,5.Assuch,thispaperfocusesonclosingtheloopbetweenthemachineparametersandthepolymerstate.Ifachieved,theseadvancedcontrolstrategieswouldprovideincreasedmoldedpartqualityandconsistency.CavityPressureControlAfundamentalstatevariablethatcanberegulatedduringthemoldingcycleiscavitypressure.Closed-loopcontrolofcavitypressurecouldautomaticallycompensateforvariationsinmeltviscosityandinjectionpressuretoachieveaconsistentprocessanduniformsetofproductattributes6.Mannintroducedoneofthefirstpressurecontrolschemesbyusingmodulatedpressurereliefvalves7,andAbuFaradevelopedaprocesscontrolmodelbyrelatingthecavitypressureresponsetoopen-loopperturbations8.Srinivasanlaterusedthesemodelstoproposealearningcontrollerforclosed-loopcavitypressurecontrol9.Adaptivecontrolmethodshavealsobeenproposedtotrackcavitypressureprofileatusuallyonelocationinthemold10-12.Unfortunately,cavitypressurecontrolsuffersfromthelackofasystematicmethodofdeterminingthepressureprofile.Inaddition,itishandicappedbytheabsenceofappropriateactuatorsfordistributedpressurecontrol,asconventionalmoldingmachinesareequippedwithonlyoneactuator(thescrew)whichdoesnotallowsimultaneouscavitypressurecontrolatmultiplepointsinthemold.ConsiderthemelttransportsysteminaconventionalcoldrunnermoldasshowninFig.3.Itisevidentthatthegeometryis“hard-wired”intothemold.Therunnerlocationsarefixedandthegatedimensionsarealsofixed.Theresultingpressuredistributioncannotbecontrolledwithoutre-toolingmoldsteel.Figure3:TypicalPackingPressureDistributionToinvestigatethecontrollabilityoftheinjectionmoldingprocess,ahalf-factorialdesignofexperiments13wasperformedtodeterminethemaineffectsbetweenthecriticalprocessparametersandthepartdimensions:3Copyright©1999byASME=ScrewSpeedeTemperaturVelocityPressureLLL10.018.005.023.000.029.018.051.002.043.010.057.0321(4)Inthisequation,themachineparametershavebeenscaledtotherangeof0to1,indicativeofthemaximumfeasibleprocessingrangeforthisapplication.Theresultingcoefficientsofthelinearmodelareactualchangeinpartdimensionsmeasuredinmm.Itshouldbenotedthatoncetoolingiscompleted,thedimensionalchangesavailablethroughprocessingarequitelimitedthoughfunctionallysignificant.Theprimaryconclusionthatshouldbedrawnfromeq.(4),however,isthatallthedimensionsreactsimilarlytochangesintheprocesssettings.Thus,themoldingprocessbehavesasaonedegreeoffreedomprocessinwhichonlyonequalityattributeiscontrollable.OneofNamSuhsaxioms14ofdesignstatesthat“independenceoffunctionalrequirementsshouldbemaintained.”Thisaxiomwasappliedtodevelopmultipledegreesoffreedomforcontrolofmeltflowandpressureinthemoldcavity.AsshowninFig.4,thevalvesmetertheflowofmeltfromtherunnersintothemoldcavity.Thepressuredropandflowrateofthemeltisdynamicallyvariedbytheaxialmovementofeachvalvestemwhichcontrolsthegapbetweenthevalvestemandthemoldwall.Byde-couplingthecontrolofthemeltatdifferentvalvestempositions,meltcontrolateachgatecanoverridetheeffectsofthemoldingmachineandprovidebettertimeresponseanddifferentialcontrolofthemelt.Eachvalveactsasanindividualinjectionunit,lesseningdependencyonmachinedynamics.Forclosedloopcontrol,manifoldpressuretransducerswereusedintherunnerdropsinsteadofinthecavity.Thisimplementationnotonlyprovideslowercostandgreaterreliability,butalsorendersaconventionalappearanceforthesystem.MeltInletValve1Valve2Cavity1Cavity2P1P2Figure4:DynamicFlowRegulationDesignTheresultingcontrollabilityoftheinjectionmoldingprocessisdemonstratedinFig.5wheremultiplepressureprofilescanbemaintainedinthemoldcavityofasinglepart.Inthesamecycle,threedifferentmagnitudesofmeltpressurewereexertedatdifferentgatesinthesamemoldcavity.ThecontrolpressurefortheholdingstageatGate1is41.4MPa(6000psi.),Gate2is41.4MPa(6000psi.),Gate3is20.7MPa(3000psi.),andGate4is62.1MPa(9000psi.).Inconventionalinjectionmolding,themeltpressurewouldbethesameatallgates.Thislevelofprocesscontrolhasnotpreviouslybeenachievedbyanymoldingtechnologythusfar.Eachgatecanexertaspecificholdingpressure.010203040506070024681012Time(sec)Figure5:DynamicFlowRegulationDesignThematerialshrinkageanddimensionschangeatdifferinglocationsinthepartbasedonthepressurecontoursandhistoriesaroundthegates.Theabilitytochangeindividualdimensionsorotherqualityattributeswithoutre-toolingmoldsteelprovidessignificantprocessflexibility.Itispossibletoaugmenteq.(4)withtheadditionaldegreesoffreedomandre-examinethecontrollabilityofthethreepartdimensions:+=P4P3P2P1ScrewSpeedeTemperaturVelocityPressureL3L2L121.000.002.000.016.000.017.010.000.060.031.000.001.003.002.001.000.005.009.003.001.008.005.002.0(5)Therearetwosignificantimplicationsofthisresult.First,theclosedloopcontrolofcavitypressureshassignificantlyreducedthedependenceofpartdimensionsonmachinesettings,asevidencedbythereductioninthemagnitudeofcoefficientsfortheprimarymachinesettings.Thiseffecthasalsobeenevidencedbyreductionsinthestandarddeviationsofmultiplepartdimensionsbyanaveragefactoroffive,resultinginanincreaseintheprocesscapabilityindex,Cp,fromlessthan1tofarbeyond2.Second,thesecondmatrixineq.(5)isevidenceoftheimproveddimensionalcontrollabilityprovidedbythedynamicregulationofthecavitypressuredistribution.Ingeneral,changingthecavitypressureatthegateclosesttoadimensionprovidesthemajoreffectonpartdimensions.Additionally,independentcontrolofthevalvestemsprovidesthecapabilitytovarydimensionsatonelocationwithoutinterferingwithdimensionsatanotherlocation.Thisflexibilitydoesnotexistin4Copyright©1999byASMEconventionalmoldingbecauseholdpressurechangesintendedtoinfluenceoneareaofthepartcanbetransmittedtootherareasofthepartthroughthestaticfeedsystem.Itshouldbenoted,however,thatthetotalmagnitudeofdimensionalchangeavailablewithdynamicpressureregulationisapproximatelythesameasforconventionalmolding.Theseresultsmayhaveasignificantimpactontheproductandtoolingdevelopmentprocess.Currently,numericalmoldfillingsimulationsandexpertjudgmentsarecombinedtoestimatetheprocessbehaviorandmakecriticaldesigndecisions.Ifthesedecisionsareincorrect,thentoolingmodificationsmayberequired.Improvedcontrollabilityoftheinjectionmoldingprocesspermitscorrectionformanydesigninaccuraciesduringthemoldcommissioningstagewithoutretooling.Suchachangeinthedevelopmentprocesscouldsubstantiallyreducethetooldevelopmentcosts,shortenthedevelopmentcycle,andhastentimetomarket.Thedescribedprocessisalsosignificantinthatitmovespolymercontrolfromthemoldingmachinetothemolditself.Thisreducesthemoldingmachinetoapolymericpump.Variationsininjectionpressure,flowrates,packpressures,orpacktimesareallcompensatedthroughdynamicpressureandtemperaturecontrol.Themarketrepercussionscouldbesignificant,as1)anoldmachinewithoutclosedloopcontrolcanprovideconsistencyequaltomodernmachines,and2)amoldcommissionedonamoldingmachineintheUnitedStatesisensuredtoproduceconsistentpartsonamoldingmachineoverseas.Themoldbecomesitsownself-containedqualitycontrolmechanism.Assuch,thepotentialproductivityandqualitygainsaresubstantial.TemperatureControlThetypicalheatpathinthecoolingstageofinjectionmoldingisthatheatisconductedfromthehotpolymertothecomparativelycoldmold,thenconductedthroughthemoldtothecoolingline,whereitisconvectedawaybythecoolant.Recentresearchhasattemptedtodynamicallycontrolthethermalandfluidpropertiesofthemeltwithinthemoldingcycle.Whiledynamicpressurecontrolhasbeenprovenfeasible15andisbeingcommercialized,therelativelyslowthermaltransientshavepreventedsimilargainsinthermalmanagement.Thecoolingstageofinjectionmoldingcycleisnotidealforavarietyofreasonsimpactingboththeproductqualityandproductioneconomics.Theprocessphysicsdictatethatthemoldtemperaturemustbelessthanthepolymerheatdeflectiontemperaturesuchthatarigidpartisejected.However,thecoldmoldtemperatureconductsheatfromthehotpolymermelttothecoldmoldduringinjectioncausingthedevelopmentofaskinontheexteriorofthepartandpropagationoffrozenlayerstowardsthecoreofthepart.Thesefrozenlayersincreasetheflowresistance,makingthemoldcavitydifficulttofill.Sincefrozenlayersaredevelopedcontinuouslyduringinjectionandcooling,theylockinvaryinglevelsofstressandorientation.Thisvariationinpolymermorphologyasafunctionofthicknessreducesoptical,structural,andotherpartproperties16-19.Tocompensateforthenegativeeffectsofcoldmoldwalls,manufacturersmayrunthemoldathighermoldtemperatures,highermelttemperatures,higherinjectionpressures,andhigherinjectionvelocities20,21.Alternatively,alowerviscositypolymerorhigherpartwallthicknessmayberequiredwithcostand/orperformancedisadvantages.Alloftheseoptionsnegativelyimpacttheeconomicsofproduction.Infact,theeconomicdriversdictatehighermoldtemperaturesduringinjection(toallowthinpartwallthicknessesandlowinjectionpressures)butlowermoldtemperaturesduringcooling(toallowrapidsolidification).Thisoptimalmoldtemperaturecontrolstrategyisinfeasiblegivencurrentcontrolstrategiesandmaterialtechnologies.Thesizeofthemold,togetherwithitshighheatcapacityandthermalinertia,preventsdynamicclosedloopcontrolofthemoldsurface.Thisstatementisbasedonobjectiveanalysisaswellasobservationofprioracademicandindustrial22-34.Forinstance,Jansen35,Chen36,andotherresearchershaveutilizedathermoelectricdevicewithinthemoldwalltodynamicallyheatandcoolaportionofthemold.However,thetimeresponseoftheseactivecontrolelementsisrelativelyslow,ontheorderofseconds.Also,thereislimitedabilitytoinducealargethermaldifferentialduetothemassandpropertiesofthemold.Alternativeresearchers25,26,31,32utilizedthininsulativecoatingsonthesurfaceofthemoldtodelaytheonsetoffreezinguntilafterpolymerinjection.Suchcoatingsdidnotprovideadequatedurability,butasimilartechniqueisbeingsuccessfullyutilizedbehindmetallicstampersinproductionofopticalmediatoreducethecycletimeby0.2seconds.Onabroaderscope,moldinsertswithhighthermalconductivity27-29arebeingmorefrequentlyutilizedtoincreasetherateofheattransferinthickand/orhotsectionsofthepart.Aspreviouslystated,nothermoelectricorotherthermalactuatorexistswhichwillprovidethedesiredtransientmoldwalltemperaturecontrol.Moreover,otherpassiveelements(suchasinsulatorsorconductors)canonlydelayoraugmenttheflowofheatfromthepolymermelttothecoolingline.Itisevidencedfromthesepreviousattemptsthatdynamicclosedloopcontrolstrategieshavebeenunabletoeitherincreasetheperformanceofthemoldedpartorreducethemanufacturingcost.Coatingsandinsertsapproacheswhichdonotuseactivecontrolelementshaveprovensomewhateffectiveandaregainingacceptanceandpenetrationinthemoldingindustry.Fortheplasticsindustry,anysuccessfultechnologymustrequirelittleadditionalcomplexityandcostwhilebeingsufficientrobustforhighvolumeproduction.Theobjectiveofcurrentresearchistodevelopanovelandmorecapablemethodfordynamiccontrolofmoldwalltemperaturethroughouttheinjectionmoldingprocess.Theresultingtechnologyshouldenablehighmoldwalltemperaturesduringtheinjectionandpackingstagestofacilitatepolymer

    注意事项

    本文(外文翻译--可控注塑成型的发展趋势 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!