会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > DOC文档下载

外文翻译--基于人工神经网络的车牌照识别.doc

  • 资源星级:
  • 资源大小:292.97KB   全文页数:11页
  • 资源格式: DOC        下载权限:注册会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--基于人工神经网络的车牌照识别.doc

中国地质大学长城学院本科毕业论文外文资料翻译系别工程技术系专业机械设计制造及其自动化姓名学号2012年3月20日外文资料翻译译文基于人工神经网络的车牌照识别厄尔丁克kocera,kursatcevikbK摘要近年来,随着车辆数量在交通中的增加必要的个人工作在交通控制中的数量也随之增加。为了解决这个问题,计算机自动控制系统被开发。汽车牌照自动识别系统就是其中之一。在这个系统中,汽车牌照自动识别系统是基于人工神经网络的。在这个系统中,259个车辆图片被使用。这些车辆的图片是从相机中提取,然后车牌区域尺寸220x50的像素决定了这张照片使用的图像处理算法。字符包括字母和数字,在车牌定位中使用边缘检测算子和斑点的着色方法。斑点染色方法应用于ROL来区分车牌特征。在这一阶段的工作特征提取,采用平均绝对偏差公式。数字化特征进行分类使用前馈多层感知器神经网络回传播。关键词车辆牌照识别,人工神经网络,模糊着色,字符识别1.简介在发展中国家,汽车数量日益增加。与此同时,必须认识到车辆和车牌同时也是增加的。以计算机为基础的车辆牌照自动识别系统为解决这一问题提供了必要性。在这项研究中,提出了一种高效的汽车牌照自动识别系统基于人工神经网络(神经网络)。该系统由三个主要议题定位板地区的汽车图像,车牌字符图像的分割,字符分割和识别。该方案提出的车牌自动识别系统显示在图1。CameraVehicleFindingtheSegmentingtheFeatureRecognitionImagePlateRegionCharactersExtractionwithANN图1汽车牌照自动识别系统2.以前的作品根据土耳其民用车牌识别,及成功率(SR)为基础的车牌定位(PRL),字符分割(CS)和字符识别(CR)过程给出了表1表1AuthorYearNumberofImageUsedSRforPRLSRforCSSRforCRH.Caner20064292,8587,1794,12S.Ozbay200634097,6596,1898,82G.Yavuz200880929590B.Yalim20082009692,53.定位车牌区域第一阶段的汽车牌照识别系统是找到车牌定位车辆图像。板区域通常由白底黑字组成。因此,过渡区之间的黑色和白色的颜色是非常密集的,在这一调查区域,包括大部分的过渡点,将足已定位车牌区域。为此,边缘检测算子应用于车辆的图像得到的过渡点。坎尼边缘检测器使用了一个过滤器的基础上的一阶导数的高斯平滑。经过平滑的形象,消除噪音,下一步就是提取图像的梯度。这一进程,33矩阵被作为操作使用尺寸来进行边缘强度的梯度计算。这一信息使我们得到边缘点,如此密集的地区可确定过渡点。过渡点之间的黑色和白色的颜色确定了这一边缘图。边缘检测和定位车牌区域的图像显示在图2图2(一)原始汽车图像边缘检测(二)局部区域4.字符分割灰度车牌图像分割过程之前应加强。因为对比度差异可能发生在提取图像的照相机。此外,不必要的肮脏的地区和一些噪音影响可以放在分割过程中负方向。在这项工作中,灰度图像的增强了运用对比的延伸和中值滤波技术。因此,对比差异图像和声音等脏区域在白色背景,该板可以消除。图像增强阶段后,斑点显色法的实施,确定边界的字符。4.1.对比度扩展扩展的图像对比度的手段,均衡直方图。换句话说,对比度扩展使图像锐化。灰度直方图是图像灰度分布值的图像。直方图均衡化是一种流行的技术,以改善外观形象差的对比。这个过程直方图均衡化的图像有4个步骤(1)求直方图的值。(2)规范这些值除以总像素。(3)乘以这些正常价值的最大灰度值。(4)图的新的灰度值。对比度扩展车牌图像显示在图3。4.2.中值滤波中值滤波是用来消除不必要的噪音的地区。在这个滤波算法中周围的图像的33矩阵被截取。这个矩阵的尺寸可以根据噪声水平来进行调整。这个过程的工作,(1)一个像素为中心像素的33矩阵,(2)周围像素邻域像素分配,(3)排序过程之间采用这九个像素由小做大,(4)第五个元素分配为中位数元,(5)这些程序实施的所有像素图像。过滤后的图像显示在图3。图3(一)原车牌区域的图像(二)对比度扩展图像(三)中值滤波后的图像4.3.斑点的着色方法斑点(二进制大对象)着色算法具有很强的结构计算法来确定临近和相关地区二进制图像。该算法使用一种特殊形模板扫描,图像从左到右,从上到下。这种扫描过程确定独立的地区获得连接到四方向从零开始的背景图像。在这项工作中,四个方向的点着色算法应用于二进制编码的车牌图像获取字。实施后,字符分割得到了车牌区域的图像(图4)。图4字符分割在这项工作中,字符分割被列为单独的数字和字母。为此,板图像分为三个地区。第一区域包括双位数字,表明城市交通代码。二区域由一至三的字母。第三个区域由二至四位数字组成。板图像扫描形成确定自左向右水平和空间之间的字符。在这个过程,

注意事项

本文(外文翻译--基于人工神经网络的车牌照识别.doc)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5