会员注册 | 登录 | 微信快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译--实时自适应运动规划 英文版.pdf

  • 资源星级:
  • 资源大小:756.27KB   全文页数:14页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--实时自适应运动规划 英文版.pdf

IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER20081199RealTimeAdaptiveMotionPlanningRAMPofMobileManipulatorsinDynamicEnvironmentsWithUnforeseenChangesJohnVannoyandJingXiao,SeniorMember,IEEEAbstractThispaperintroducesanovelandgeneralrealtimeadaptivemotionplanningRAMPapproachsuitableforplanningtrajectoriesofhighDOForredundantrobots,suchasmobilemanipulators,indynamicenvironmentswithmovingobstaclesofunknowntrajectories.TheRAMPapproachenablessimultaneouspathandtrajectoryplanningandsimultaneousplanningandexecutionofmotioninrealtime.Itfacilitatesrealtimeoptimizationoftrajectoriesundervariousoptimizationcriteria,suchasminimizingenergyandtimeandmaximizingmanipulability.Italsoaccommodatespartiallyspecifiedtaskgoalsofrobotseasily.Theapproachexploitsredundancyinredundantrobotssuchaslocomotionversusmanipulationinamobilemanipulatorthroughloosecouplingofrobotconfigurationvariablestobestachieveobstacleavoidanceandoptimizationobjectives.TheRAMPapproachhasbeenimplementedandtestedinsimulationoveradiversesetoftaskenvironments,includingenvironmentswithmultiplemobilemanipulators.TheresultsandalsotheaccompanyingvideoshowthattheRAMPplanner,withitshighefficiencyandflexibility,notonlyhandlesasinglemobilemanipulatorwellindynamicenvironmentswithvariousobstaclesofunknownmotionsinadditiontostaticobstacles,butcanalsoreadilyandeffectivelyplanmotionsforeachmobilemanipulatorinanenvironmentsharedbymultiplemobilemanipulatorsandothermovingobstacles.IndexTermsAdaptive,dynamicobstaclesofunknownmotion,loosecoupling,mobilemanipulators,partiallyspecifiedgoal,realtime,redundantrobots,trajectoryoptimization.I.INTRODUCTIONMOTIONPLANNINGisafundamentalprobleminrobotics1,2concernedwithdevisingadesirablemotionforarobottoreachagoal.MotionplanningforhighDOFarticulatedmanipulatorsormobilemanipulatorsismorechallengingthanformobilerobotsbecausethehighdimensionalconfigurationspaceofarobothaslittleornoresemblancetothephysicalspacethattherobotworksin,andhowtoconstructManuscriptreceivedMay16,2007revisedDecember13,2007andMarch5,2008.FirstpublishedOctober10,2008currentversionpublishedOctober31,2008.ThispaperwasrecommendedforpublicationbyAssociateEditorK.YamaneandEditorL.Parkeruponevaluationofthereviewerscomments.ApreliminarypartofthispaperwaspresentedattheIEEEInternationalConferenceonIntelligentRobotsandSystems,Sendai,Japan,2004.TheauthorsarewiththeIntelligent,MultimediaandInteractiveSystemsIMILaboratory,DepartmentofComputerScience,UniversityofNorthCarolinaatCharlotte,Charlotte,NC28223USAemailjmvannoygmail.comxiaouncc.edu.Thispaperhassupplementarydownloadablematerialavailableathttp//ieeexplore.ieee.org,providedbytheauthorsavideoshowingtherealtimeplanningandexecutionofmobilemanipulatormotionbyourRAMPalgorithm.Thisvideois14MBinsize.Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineathttp//ieeexplore.ieee.org.DigitalObjectIdentifier10.1109/TRO.2008.2003277aconfigurationspacehigherthanthreedimensionsefficientlyremainsalargelyunsolvedproblem.A.RelatedResearchonMotionPlanningRandomizedalgorithms,suchasthepopularprobabilisticroadmapPRMmethod3andrapidlyexploringrandomtreeRRTmethod4,arefoundtobeveryeffectiveinfindingacollisionfreepathforarobotwithhighDOFsofflinebecausesuchalgorithmsavoidbuildingtherobotsconfigurationspaceexplicitlybysamplingtheconfigurationspace.ThePRMmethodhasinspiredconsiderableworkonimprovingsamplingandroadmapconstruction2,includingarecentpaper5onproducingcompactroadmapstobettercapturethedifferenthomotopicpathgroups.Bybuildingatreeratherthanagraph,theRRTmethodismoresuitableforgeneratingapathinoneshotorgeneratingatrajectorydirectlyandthusmoresuitableforonlineoperation6.Bothmethodshaveseenmanyvariants2.TherearealsomethodsforpathplanningbasedongeneticalgorithmsGAs,ormorebroadly,evolutionarycomputation7,8,whicharegeneralframeworksofrandomizedsearchsubjecttouserdefinedoptimizationcriteria.Suchoptimizationtechniqueshavebeenusedwidelyandsuccessfullyinmanyapplicationdomains8,9totackleNPhardoptimizationproblems.Therearetwomajorwaysofapplications.Onestraightforwardwayistomapaproblemintotheformsuitableforastandard,offtheshelfGA,solveitbyrunningtheGA,andthen,maptheresultsbacktotheapplicationdomain.ThisonesizefitallapproachisoftennoteffectivebecauseitforcesartificialtransformationofaproblemintosomethingelsethatisconfinedintheformatofastandardGAbutmaylosecertainimportantnatureoftheoriginalproblem.SomeGAbasedpathplanningmethods10,11adoptsuchanapproach,whereCspaceisdiscretizedintoagrid,andapathisintermsofafixedlengthsequenceofgridpoints.AsthestandardGAoperatesonfixedlengthbitstrings,searchisoftenveryslow.Amoreeffectiveapproachistoadoptthegeneralideaofevolutionarycomputationtosolveaprobleminamorenaturalandsuitablerepresentation.Thepathplanningmethodsreportedin12–14belongtosuchacustomizedapproach.Arealtimepathplanningmethodisreportedin12for2DOFpointmobilerobots,whichisextendedin13for3DOFpointflyingrobotswithspecificconstraints.Amultiresolutionpathrepresentationisproposedin14forpathplanning.However,allevolutionaryalgorithmshaveanumberofparametersthatmustbesetappropriately,whichisoftennotatrivialtask.15523098/25.00©2008IEEE1200IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER2008Unlikepathplanning,motionplanninghastoproduceanexecutabletrajectoryforarobotinconfigurationtimespace,orCTspace,andnotmerelyageometricalpath.Acommonapproachistoconducttrajectoryplanningonthebasisofapathgeneratedbyapathplanner.Anotableframeworkistheelasticstripmethod15,whichcandeformatrajectoryforarobotlocallytoavoidmovingobstaclesinsideacollisionfreetunnelthatconnectstheinitialandgoallocationsoftherobotina3Dworkspace.Suchatunnelisgeneratedfromadecompositionbasedpathplanningstrategy16.Theotherapproachistoconductpathandtrajectoryplanningsimultaneously.However,mosteffortinthiscategoryisfocusedonofflinealgorithmsassumingthattheenvironmentiscompletelyknownbeforehand,i.e.,staticobjectsareknown,andmovingobjectsareknownwithknowntrajectories17–20.Asfordealingwithunknownmovingobstacles,onlyrecentlysomemethodswereintroducedformobilerobots21,22.Thecombinationofmobilityandmanipulationcapabilitymakesamobilemanipulatorapplicabletoamuchwiderrangeoftasksthanafixedbasemanipulatororamobilerobot.Foramobilemanipulator,ataskgoalstateisoftenpartiallyspecifiedaseitheraconfigurationoftheendeffector,whichwecallaplacetoplacetask,oradesiredpathortrajectoryoftheendeffector,whichwecallacontourfollowingtask,andthetargetlocation/pathofthebaseisoftenunspecified.Here,amajorissueofmotionplanningisthecoordinationofthemobilebaseandthemanipulator.Thisissue,asitinvolvesredundancyresolution,presentsbothchallengesandopportunities.Thereexistsarichliteratureaddressingthisissuefrommanyaspects.Someresearcherstreatthemanipulatorandthemobilebasetogetherasaredundantrobotinplanningitspathforplacetoplacetasks23–25.Somefocusedonplanningasequenceofcommutationconfigurationsforthemobilebasewhentherobotwastoperformasequenceoftasks26,27subjecttovariousconstraintsandoptimizationcriteria.Othersfocusedoncoordinatingthecontrolofthemobilebaseandthemanipulatorinacontourfollowingtask28,29bytryingtopositionthemobilebasetomaximizemanipulability.Manyconsiderednonholonomicconstraints.Whilemostoftheexistingworkassumesknownenvironmentswithknownobstaclesforamobilemanipulator,afewresearchersconsideredlocalcollisionavoidanceofunknown,movingobstaclesonline.Onemethod30usedRRTasalocalplannertoupdatearoadmaporiginallygeneratedbyPRMtodealwithmovingobstacles.Forcontourfollowingtasks,anefficientmethod31allowsthebasetoadjustitspathtoavoidamovingobstacleifpossiblewhilekeepingtheendeffectorfollowingacontour,suchasastraightline.Anothermethod29allowedthebasetopauseinordertoletanunexpectedobstaclepasswhilethearmcontinueditscontourfollowingmotionunderaneventbasedcontrolscheme.Othermethodsincludeonebasedonpotentialfield32toavoidunknownobstaclesandonebasedonaneurofuzzycontroller33tomodifythebasemotionlocallytoavoidamovingobstaclestably.Thereisalsoanonlineplannerforthespecialpurposeofplanningthemotionsoftworobotarmsgettingpartsfromaconveyerbelt34.However,wearenotawareofanyexistingworkthatcanplanmotionsofhighDOFrobotsgloballyamongmanyunknowndynamicobstacles.B.OurProblemandApproachPlanninghighDOFrobotmotioninsuchanenvironmentofmanyunknowndynamicobstaclesposesspecialchallenges.First,planninghastobedoneinrealtime,cannotbedoneoffline,andcannotbebasedonacertainprebuiltmapbecausetheenvironmentisconstantlychanginginunforeseenways,i.e.,theconfigurationspaceobstaclesareunknownandchanging.Examplesofsuchenvironmentsincludealargepublicsquarefullofpeoplemovingindifferentways,awarehousefullofbusymovingrobotsandhumanworkers,andsoon.Suchanenvironmentisverydifferentfromstaticorlargelystaticenvironmentsorknowndynamicenvironmentsi.e.,withotherobjecttrajectoriesknown,wheremotionplanningcanreasonablyrelyonexploringCspaceforknownstaticenvironmentsorCTspaceforknowndynamicenvironmentsofflinesuchasbyPRM.Theelasticstripmethodprovidestheflexibilitytomakesmalladjustmentsofarobotmotiontoavoidunknownmotionsofobstacles,iftheunderlyingtopologyoftheCspacedoesnotchange.ForanenvironmentwithchangingCspacetopologyinunknownways,aplannedpath/trajectorycanbeinvalidatedcompletelyatanytime,andthus,realtimeadaptiveglobalplanningcapabilityisrequiredformakingdrasticchangesofrobotmotion.Planningandexecutionofmotionshouldbesimultaneousandbasedonsensingsothatplanninghastobeveryfastandalwaysabletoadapttochangesoftheenvironment.Bynature,totacklemotionplanninginanunknowndynamicenvironmentcannotresultinacompleteplanningalgorithm.Thatis,noalgorithmcanguaranteesuccessinsuchanunknownenvironment.WecanonlystriveforarationalalgorithmthatservesasthebestdriverofahighDOFrobot,buteventhebestdrivercannotguaranteetobeaccidentfreeifotherthingsintheenvironmentarenotunderhis/hercontrol.ThispaperaddressestheproblemofrealtimesimultaneouspathandtrajectoryplanningofhighDOFrobots,suchasmobilemanipulators,performinggeneralplacetoplacetasksinadynamicenvironmentwithobstaclemotionsunknown.Theobstaclemotionscanobstructeitherthebaseorthearmorbothofamobilemanipulator.WeintroduceauniqueandgeneralrealtimeadaptivemotionplanningRAMPapproach.OurRAMPapproachisbuiltuponboththeideaofrandomizedplanningandthatoftheanytime,parallel,andoptimizedplanningofevolutionarycomputation,whileavoidingthedrawbacks.Theresultisauniqueandoriginalapproacheffectivefortheconcernedproblem.TheRAMPapproachhasthefollowingcharacteristics.1WholetrajectoriesarerepresentedatonceinCTspaceandconstantlyimprovedduringsimultaneousplanningandexecution,unlikealgorithmsthatbuildapath/trajectorysequentiallyorincrementallysothatawholepath/trajectorycanbecomeavailableonlyattheendoftheplanningprocess.OuranytimeplannercanprovideavalidtrajectoryquicklyandcontinuetoproducebetterVANNOYANDXIAOREALTIMEADAPTIVEMOTIONPLANNINGRAMPOFMOBILEMANIPULATORSINDYNAMICENVIRONMENTS1201trajectoriesatanylatertimetosuittheneedofrealtimeglobalplanning.2Differentoptimizationcriteriasuchasminimizingenergyandtimeandoptimizingmanipulabilitycanbeaccommodatedflexiblyandeasilyinaseamlessfashion.Optimizationisdonedirectlyintheoriginal,continuousCTspaceratherthanbeingconfinedtoacertainlimitedgraphorroadmap.Trajectoriesareplannedandoptimizeddirectlyratherthanconditionaltotheresultsofpathplanning.3Ourplannerisintrinsicallyparallelwithmultiplediversetrajectoriespresentallthetimetoallowinstant,andifnecessary,drasticadjustmentofrobotmotiontoadapttonewlysensedchangesintheenvironment.Thisisdifferentfromplannerscapableofonlylocaltrajectoryadjustmentbasedonaknownsetofhomotopicpaths.Itisalsodifferentfromsequentialplanners,suchasanytimeAsearch35,whichalsorequiresbuildingadiscretestate–spaceforsearchalimitationthatourplannerdoesnothave.4Trajectorysearchandevaluationofitsoptimalityareconstantlyadaptivetochangesbutbuiltupontheresultsofprevioussearchi.e.,knowledgeaccumulatedtobeefficientforrealtimeprocessing.5Asplanningandexecutioni.e.,robotmotionfollowingtheplannedresultsofararesimultaneous,partiallyfeasibletrajectoriesareallowed,andtherobotmayfollowthefeasiblepartofsuchatrajectoryifitisthecurrentbestandswitchtoabettertrajectorytoavoidtheinfeasiblepart.6Withmultipletrajectoriesfromourplanner,eachtrajectorycanendatadifferentgoallocationinagoalregion,i.e.,partiallyspecifiedgoals,ratherthanasinglegoalconfiguration.7Ourplannerrepresentsatrajectoryforaredundantrobot,suchasamobilemanipulator,aslooselycoupledtrajectoriesofredundantvariablestotakeadvantageoftheredundancyinordertobestachieveobstacleavoidanceandvariousoptimizationobjectives.Therestofthepaperisorganizedasfollows.SectionIIprovidesanoverviewofourRAMPapproachSectionsIIIandIVdescribeproblemrepresentationandinitializationSectionVoutlinesouroptimizationcriteriafortrajectoryevaluationanddescribesthestrategiesforevaluation.SectionsVIandVIIdescribethestrategiestoaltertrajectoriestoproducebetterones.SectionVIIIdescribeshowtheRAMPplannercancreateandpreserveadiversesetoftrajectories.SectionIXprovidesimplementationandexperimentationresultsanddiscussesperformanceoftheplanner.SectionXconcludesthepaper.II.OVERVIEWOFTHERAMPAPPROACHOnebasicpremiseofourapproachisthattheplanningprocessandtheexecutionofmotionareinterweavingtoenablesimultaneousrobotmotionplanningandexecution.ThisisachievedthroughouranytimeplanningalgorithmthatalwaysmaintainsasetofcompletetrajectoriesintheCTspaceoftherobotcalledapopulation.Thefeasibilityandoptimalityofeachtrajectory,calledfitness,isevaluatedthroughanevaluationfunctioncodingtheoptimizationcriteria.Feasibilityreferstocollisionfreeandsingularityfree.Bothinfeasibleandfeasibletrajectoriesareallowedinapopulation.Feasibletrajectoriesareconsideredfitterthaninfeasibletrajectories.Withineachtype,trajectoriesarecomparedforoptimalityinfitness.Theinitialpopulationisacombinationofrandomlygeneratedanddeliberatelyseededtrajectories.Deliberatelyseededtrajectoriesincludeonesconstructedtorepresentdistinctsubpopulationsinordertoachievecertaindiversityinthepopulation.Iftheenvironmentcontainsknownstaticobstacles,trajectoriesbasedonpreplannedfeasiblepathswithrespecttotheknownstaticobstaclescanalsobeincluded.SeeSectionIVformoredetails.Oncetheinitialpopulationisformed,itisthenimprovedtoafitterpopulationthroughiterationsofimprovements,calledgenerations.Ineachgeneration,atrajectoryisrandomlyselectedandalteredbyarandomlyselectedmodificationoperatoramonganumberofdifferentmodificationoperators,andtheresultingtrajectorymaybeusedtoreplaceatrajectorythatisnotthefittesttoformanewgeneration.Thefittesttrajectoryisalwayskeptinthepopulationandcanonlyimprovefromgenerationtogeneration.Eachgenerationisalsocalledaplanningcycle.Toimprovethefitnessoftheinitialpopulation,anumberofinitialplanningcyclesmayberunbasedontheinitialsensinginformationoftheenvironmentbeforetherobotbeginsexecutingthefittesttrajectory.Therobotneednotwaitforafeasibletrajectorytoemergeifnofeasibletrajectoryisavailable,therobotwillbeginmovingalongthefittestinfeasibletrajectorywhilecontinuingthesearchforafitter,andhopefullywilllocateafeasibletrajectorybeforeitcomeswithinadistancethresholdDofthefirstpredictedcollisionorsingularityoftheexecutedtrajectory.Thisstrategymakessensebecause1thepresentlypredictedinfeasibletrajectorymaybecomefeasiblelaterandviceversa2astobedescribedlater,ourplannermakestherobotswitchtoabettertrajectoryifoneisavailable,andthus,beforetheinfeasiblepartofthecurrentlyfollowedtrajectoryisencountered,therobotmayalreadyswitchtoabettertrajectory3thestrategyallowslimitedsensing,inwhichtherobotmaynotsenseanobstacleuntilgettingcloserand4itprovidesameasureofsafetyintrajectoryevaluationseeSectionV.Astherobotmoves,planningcontinuestoimprovethepopulationoftrajectoriesuntilthenextcontrolcycle,whentherobotcanswitchtoafittertrajectorysothatitalwaysfollowsthebesttrajectory.Forthatpurpose,eachtrajectoryisalwaysupdatedtostartfromthecurrentrobotconfigurationwiththecurrentvelocitywhenanewcontrolcyclebegins.Forthetrajectorythatisbeingfollowed,thismeansthattheexecutedportionofthetrajectoryisdroppedfromthetrajectory,whileforeveryothertrajectory,itmeansthatonlythestartingconfigurationandvelocityarechangedtherestoftheknotpointsonthetrajectoryseeSectionIIIremainintact.Notethateachcontrolcycleheredoesnotnecessarilyhavetobeaservocycleofthelowlevelcontroller.Ourcontrolcycle,whichishighlevelforcontrollingtherateofadaptation,canbelongerthanaservocycletoensurethatwithinacontrolcycle,therecanbemorethanoneplanningcycle.Thisisbecauseadaptationisguidedbyplanning.1202IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER2008Fig.1.Relationshipamongplanning,control,andsensingcycles.Changesinadynamicenvironmentaresensedandfedtotheplannerineachsensingcycle,whichleadtoupdatedfitnessvaluesoftrajectoriesinthesubsequentplanningcycles,andunknownmotionsofmovingobstaclesarepredictedinfitnessevaluationofrobottrajectories.Thepresenceofadiversepopulationofeverimprovingtrajectoriesenablestherobottoquicklyadapttochangesintheenvironment.Itdoessobyfollowingthefittesttrajectoryundereachcircumstancewhenthecurrenttrajectorythattherobotfollowsbecomesworseorcannolongerbefollowedduetoimminentcollisioni.e.,thethresholdDisreached,therobotmaynotneedtostopitsmotionandreplanfromscratchrathertheplanneroftenmerelyneedstoswitchtherobottoafeasibleorbettertrajectoryinthepopulationswiftlyinaseamlessfashion.Thechosentrajectorycanbeofaverydifferenthomotopicgroupfromthepreviousonetodealwithdrasticandlargechanges.InthecasewhentherobotreachesDofthecurrenttrajectorybutfindsnobettertrajectorytoswitchto,itwillstopitsmotionatD,whichiscalledaforcedstop.However,theRAMPplanneri.e.,therobotsthinkingprocessneverstops,anditcontinuestoplanandsearchforabettertrajectoryfortherobot.Therobotresumesitsmotiononceabettertrajectoryisfound.Suchplanning/control/sensingcyclescontinuetointeractandmovetherobottowardagoalconfigurationinthebestpossiblewayinrealtimeimprovingthetrajectoriesitfollowsifthereisnochangeintheenvironment,orbothadaptingandimprovingthetrajectoriesifthereisasensedchange.Fig.1illustratesapossiblerelationshipamongplanning,control,andsensingcyclesnotethattheplanningcyclesactuallyvaryinlength.TheRAMPalgorithmisoutlinedasAlgorithm1.Unlikeanevolutionaryalgorithm,weuserandomselectionandrandommodificationoperatorsthatcannotbecalledmutationoperatorsbecausetheyintroducedrasticratherthansmallchangestocreateadiversepopulationoftrajectoriesreadytoadapttochangingenvironments.OurRAMPalgorithmfurthermaintainsdiversityandpreventshomogeneityinapopulationoftrajectoriesbycreatingandpreservingdistinctsubpopulationsoftrajectoriesasexplainedindetailinSectionVIII.Moreover,theRAMPalgorithmdoesnotneedtuningprobabilitiesaswellasmostotherparametersthatmanyevolutionaryalgorithmsdo.Astheresult,itiseasytoimplementandisrobusttodifferenttaskenvironments.Infact,ouralgorithmonlyneedstodecidetheparameterpopulationsize,butthevaluecanbeinvariantorratherinsensitivetomanydifferentenvironments,aswillbedescribedlaterinSectionVIII.ThefitnessevaluationprocedureofRAMPisalsooriginal,incorporatingmultiplecriteriathatareoftennotconsideredinmanyothermotionplanningalgorithms,andnotonlyfeasiblebutalsoinfeasibletrajectoriesareevaluated.OurRAMPapproachalsosupportsthepartialspecificationofagoalonlytheendeffectorpositionandorientationwithrespecttotheworldcoordinatesystemareneeded.Differenttrajectoriesmayholddifferentgoalbaseconfigurationsandarmconfigurationsthatachievethesameendeffectorgoalinthecaseofmobilemanipulatorssothatredundancyisexploitedtoachieveflexibilityamidenvironmentswithdynamicchanges.ThedetailsoftheRAMPalgorithmarepresentedinthesectionsnext.III.TRAJECTORYREPRESENTATIONWerepresentatrajectoryofamobilemanipulatoruniquelyasapairoflooselycoupledmanipulatorandbasesubtrajectorieswiththefollowingcharacteristics.1Forthemanipulatorsubsystem,apathofknotconfigurationsisspecifiedinthejointspace,basedonwhichacubicsplinedtrajectoryisused.2Forthebasesubsystem,apathofknotconfigurationsisspecifiedintheCartesianspaceoftheworldcoordinate

注意事项

本文(外文翻译--实时自适应运动规划 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5