会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > DOC文档下载

外文翻译--平衡梁的剪力和弯矩.doc

  • 资源星级:
  • 资源大小:43.00KB   全文页数:5页
  • 资源格式: DOC        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--平衡梁的剪力和弯矩.doc

ShearForceandBendingMomentinBeamsLetusnowconsider,asanexample,acantileverbeamacteduponbyaninclinedloadPatitsfreeendFig.1.5a.IfwecutthroughthebeamatacrosssectionmnandisolatethelefthandpartofthebeamasfreebodyFig.1.5b,weseethattheactionoftheremovedpartofthebeamthatis,therighthandpartuponthelefthandpartmustastoholdthelefthandinequilibrium.Thedistributionofstressesoverthecrosssectionmnisnotknownatthisstageinourstudy,butweedoknowthattheresultantofthesestressesmustbesuchastoequilibratetheloadP.ItisconvenienttoresolvetotheresultantintoanaxialforceNactingnormaltothecrosssectionandpassingthroughthecentriodofthecrosssection,ashearforceVactingparalleltothecrosssection,andabendingmomentMactingintheplaneofthebeam.Theaxialforce,shearforce,andbendingmomentactingatacrosssectionofabeamareknownasstressresultants.Forastaticallydeterminatebeam,thestressresultantscanbedeterminedfromequationsofequilibrium.Thus,forthecantileverbeampicturedinFig.1.5,wemaywriterthreeequationsofstacticsforthefreebodydiagramshowninthesecondpartofthefigure.Fromsummationsofforcesinthehorizontalandverticaldirectionswefind,respectively,NPcosβVPsinβand,fromasummationofmomentsaboutanaxisthroughthecentroidofcrosssectionmn,weobtainMPxsinβwherexisthedistancefromthefreeendtosectionmn.Thus,throughtheuseofafreebodydiagramandequationsofstaticequilibrium,weareabletocalculatethestressresultantswithoutdifficulty.ThestressinthebeamduetotheaxialforceNactingalonehavebeendiscussedinthetextofUnit.2NowwewillseehowtoobtainthestressesassociatedwithbendingmomentMandtheshearforceV.ThestressresultantsN,VandMwillbeassumedtobepositivewhenthetheyactinthedirectionsshowninFig.1.5b.Thissignconventionisonlyuseful,however,whenwearediscussingtheequilibriumofthelefthandpartofthebeamisconsidered,wewillfindthatthestressresultantshavethesamemagnitudesbutoppositedirectionsseeFig.1.5c.Therefore,wemustrecognizethatthealgebraicsignofastressresultantdoesnotdependuponitsdirectioninspace,suchastotheleftortotheright,butratheritdependsuponitsdirectionwithrespecttothematerialagainst,whichitacts.Toillustratethisfact,thesignconventionsforN,VandMarerepeatedinFig.1.6,wherethestressresultantsareshownactingonanelementofthebeam.Weseethatapositiveaxialforceisdirectedawayfromthesurfaceuponwhichisactstension,apositiveshearforceactsclockwiseaboutthesurfaceuponwhichitacts,andapositivebendingmomentisonethatcompressestheupperpartofthebeam.ExampleAsimplebeamABcarriestwoloads,aconcentratedforcePandacoupleMo,actingasshowninFig.1.7a.Findtheshearforceandbendingmomentinthebeamatcrosssectionslocatedasfollowsaasmalldistancetotheleftofthemiddleofthebeamandbasmalldistancetotherightofthemiddleofthebeam.SolutionThefirststepintheanalysisofthisbeamistofindthereactionsRAandRB.TakingmomentsaboutendsAandBgivestwoequationsofequilibrium,fromwhichwefindRA3P/4–Mo/LRBP/4mo/LNext,thebeamiscutatacrosssectionjusttotheleftofthemiddle,andafreebodydiagramisdrawnofeitherhalfofthebeam.Inthisexamplewechoosethelefthandhalfofthebean,andthecorrespondingdiagramisshowninFig.1.7b.TheforcepandthereactionRAappearinthisdiagram,asalsodotheunknownshearforceVandbendingmomentM,bothofwhichareshownintheirpositivedirections.ThecoupleModoesnotappearinthefigurebecausethebeamiscuttotheleftofthepointwhereMoisapplied.AsummationofforcesintheverticaldirectiongivesVR–PP/4M0/LWhichshownthattheshearforceisnegativehence,itactsintheoppositedirectiontothatassumedinFig.1.7b.TakingmomentsaboutanaxisthroughthecrosssectionwherethebeamiscutFig.1.7bgivesMRAL/2PL/4PL/8Mo/2Dependingupontherelativemagnitudesofthetermsinthisequation,weseethatthebendingmomentMmaybeeitherpositiveornegative.Toobtainthestressresultantsatacrosssectionjusttotherightofthemiddle,wecutthebeamatthatsectionandagaindrawanappropriatefreebodydiagramFig.1.7c.TheonlydifferencebetweenthisdiagramandtheformeroneisthatthecoupleMonowactsonthepartofthebeamtotheleftofthecutsection.Againsummingforceintheverticaldirection,andalsotakingmomentsaboutanaxisthroughthecutsection,weobtainVP/4Mo/LMPL/8Mo/2WeseefromtheseresultsthattheshearforcedoesnotchangewhenthesectionisshiftedfromlefttorightofthecoupleMo,butthebendingmomentincreasesalgebraicallybyanamountequaltoMo.SelectedfromStephenP.TimoshekoandJamesM.Gere,Mechanicsofmaterials,VanNostrandreinholdCompanyLtd.,1978.平衡梁的剪力和弯矩让我们来共同探讨像图1.5a所示悬梁自由端在倾斜拉力P的作用下的问题。如果将平衡梁在截面mn处截断且将其左边部分作为隔离体(图1.5(b)。可以看出隔离体截面(右边)的作用国必须和左边的作用力平衡,截面mn处应力的分布情况我们现阶段是不知道的,但我们知道这些应力的合力必须和拉力P平衡。按常规可将合力分解成为通过质点作用于横截面的轴向应力N、平行于截面的剪切力V和作用在平衡梁平面中的弯矩M。作用在截面上的轴向应力、剪切力和弯曲应力就是应力的合成力。比如静止的固定梁合成力可由平衡方程得出,如图1.5所示悬臂梁结构。这样就可以得到图形另一部分中的图示自由部分的三个平衡方程式。由水平合力和垂直合力的方向,可得NPcosβ如果将平衡梁在截面mn处截断且将其左边部分作为隔离体(图1.5(b)。可以看出隔离体截面(右边)的作用国必须和左边的作用力平衡,截面mn处应力的分布情况我们现阶段是不知道的,但我们知道这些应力的合力必须和拉力P平衡。按常规可将合力分解成为通过质点作用于横截面的轴向应力N、平行于截面的剪切力V和作用在平衡梁平面中的弯矩M。作用在截面上的轴向应力、剪切力和弯曲应力就是应力的合成力。比如静止的固定梁合成力可由平衡方程得出,如图1.5所示悬臂梁结构。这样就可以得到图形另一部分中的图示自由部分的三个平衡方程式。由水平合力和垂直合力的方向,可得NPcosβVPsinβ如果将平衡梁在截面mn处截断且将其左边部分作为隔离体(图1.5(b)。可以看出隔离体截面(右边)的作用国必须和左边的作用力平衡,截面mn处应力的分布情况我们现阶段是不知道的,但我们知道这些应力的合力必须和拉力P平衡。按常规可将合力分解成为通过质点作用于横截面的轴向应力N、平行于截面的剪切力V和作用在平衡梁平面中的弯矩M。作用在截面上的轴向应力、剪切力和弯曲应力就是应力的合成力。比如静止的固定梁合成力可由平衡方程得出,如图1.5所示悬臂梁结构。这样就可以得到图形另一部分中的图示自由部分的三个平衡方程式。由水平合力和垂直合力的方向,可得NPcosβVPsinβ由通过截面mn质心的轴向总弯矩,可得MPxsinβ其中力是自由端到截面mn的距离。因此,通过隔离体图解和静态平衡方程,可简单地计算出各合成力。属于单独作用的轴向应力N的应力已经在第二单元讨论过了,在这里我们将讨论怎样解出与这些应力有关的弯矩M和剪切力V。假设如图1.5b所示合成力N、V和弯矩M的作用方向为正,当我们在讨论梁

注意事项

本文(外文翻译--平衡梁的剪力和弯矩.doc)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5