会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译--提高板材成形效率的坐标网分析法 英文版.pdf

  • 资源星级:
  • 资源大小:250.90KB   全文页数:6页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--提高板材成形效率的坐标网分析法 英文版.pdf

JournalofMaterialsProcessingTechnology1402003616–621EfficiencyenhancementinsheetmetalforminganalysiswithameshregularizationmethodJ.H.Yoon,H.Huh∗DepartmentofMechanicalEngineering,KoreaAdvancedInstituteofScienceandTechnologyScienceTown,Daejeon305701,SouthKoreaAbstractThispapernewlyproposesameshregularizationmethodfortheenhancementoftheefficiencyinsheetmetalforminganalysis.Theregularizationmethodsearchesfordistortedelementswithappropriatesearchingcriteriaandconstructspatchesincludingtheelementstobemodified.Eachpatchisthenextendedtoathreedimensionalsurfaceinordertoobtaintheinformationofthecontinuouscoordinates.Inconstructingthesurfaceenclosingeachpatch,NURBSnonuniformrationalBsplinesurfaceisemployedtodescribeathreedimensionalfreesurface.Onthebasisoftheconstructedsurface,eachnodeisproperlyarrangedtoformunitelementsascloseastoasquare.Thestatevariablescalculatedfromitsoriginalmeshgeometryaremappedintothenewmeshgeometryforthenextstageorincrementalstepofaforminganalysis.Theanalysisresultswiththeproposedmethodarecomparedtotheresultsfromthedirectforminganalysiswithoutmeshregularizationinordertoconfirmthevalidityofthemethod.©2003ElsevierB.V.Allrightsreserved.KeywordsMeshregularizationDistortedelementNURBSPatchFiniteelementanalysis1.IntroductionNumericalsimulationofsheetmetalformingprocessesenjoysitsprosperitywithaburstofdevelopmentofthecomputersandtherelatednumericaltechniques.Thenumericalanalysishasextendeditscapabilitiesforsheetmetalformingofcomplicatedgeometrymodelsandmultistageforming.Inthecaseofacomplicatedgeometrymodel,however,severelocaldeformationoccurstoinducetheincreaseofthecomputingtimeanddeterioratetheconvergenceoftheanalysis.Distortionandseveredeformationofthemeshgeometryhasaneffectonthequalityofforminganalysisresultsespeciallyinthecaseofmultistageforminganalysiswhenthemeshgeometryformedbytheforminganalysisatthefirststageisusedfortheforminganalysisatthenextstage.Thisillbehaviorofthedistortedmeshcanbeavoidedbythereconstructionofthemeshsystemsuchasthetotalortheadaptiveremeshingtechniques.Theadaptiveremeshingtechniqueisknowntobeanefficientmethodtoreducedistortionofelementduringthesimulation,butitstillneedstremendouscomputingandputsrestrictionsamongsubdividedelements.∗Correspondingauthor.Tel.82428693222fax82428693210.Emailaddresshhuhkaist.ac.krH.Huh.Effectivemethodstoconstructameshsystemhavebeenproposedbymanyresearchers.Typicalmethodscouldbermethod1inwhichnodalpointsareproperlyrearrangedwithoutthechangeofthetotaldegreesoffreedomofthemeshsystem,hmethod2inwhichthenumberofmeshesisincreasedwithelementsofthesamedegreesoffreedom,andpmethod3inwhichthetotaldegreesoffreedomofthemeshsystemisincreasedtoenhancetheaccuracyofsolutions.SluiterandHansen4andTalbertandParkinson5constructedtheanalysisdomainasacontinuousloopandcreatedelementsinsubloopsdividedfromthemainloop.Lo6constructedtriangularelementsinthewholedomainandthenconstructedrectangularelementsbycombiningadjacenttriangularelements.Inthispaper,ameshregularizationmethodisnewlyproposedinordertoenhancetheefficiencyoffiniteelementanalysesofsheetmetalforming.Themeshregularizationmethodautomaticallyfindsoutdistortedelementswithsearchingcriteriaproposedandcomposespatchestobemodified.Eachpatchisthenextendedtothreedimensionalsurfacesinordertoobtaintheinformationofthecontinuouscoordinatesonthethreedimensionalsurface.ThesurfaceenclosingeachpatchisdescribedasathreedimensionalfreesurfacewiththeuseofNURBSnonuniformrationalBspline.Onthebasisoftheconstructedsurface,eachnodeisproperlyarrangedtocomposeregularelementsclosetoasquare.Thestatevariablescalculatedfromitsoriginalmesh09240136/–seefrontmatter©2003ElsevierB.V.Allrightsreserved.doi10.1016/S092401360300801XJ.H.Yoon,H.Huh/JournalofMaterialsProcessingTechnology1402003616–621617geometryaremappedintothenewmeshgeometryfortheforminganalysisatthenextstage.Numericalresultsconfirmtheefficiencyoftheproposedmethodandtheaccuracyoftheresult.Itisalsonotedthatthepresentmethodiseffectiveinthecrashanalysesofsheetmetalmembersobtainedfromtheformingsimulation.2.RegularizationofthedistortedelementTheregularizationproceduretomodifydistortedelementsisintroducedinordertoenhancetheefficiencyofanalysisforthenextfiniteelementcalculation.Thedistortedelementsareselectedwithappropriatesearchingcriteriaandallocatedtoseveralpatchesforregularization.ThepatchesareextendedtothreedimensionalsurfaceswiththeuseofNURBSforfullinformationofthecontinuouscoordinatesonthethreedimensionalsurface.Onobtainingthenewcoordinatesofeachnode,thedistortedelementsareregularizedtoaregularelementthatisclosetoasquare.2.1.ThecriterionofmeshdistortionDistortedmeshesareselectedwiththetwogeometricalcriteriaoneistheinnerangleandtheotheristheaspectratiooftheelementside.2.1.1.InnerangleTheinnerangleofaquadrilateralelementshouldbeclosetotherightangleforgoodresultsfromfiniteelementcalculation.Zhuetal.7definedthereasonableelementwhenthefourinneranglesareformedwiththeangleof90◦±45◦whileLoandLee8proposedtheinnerangleof90◦±52.5◦asthesamecriterion.ThecriterionofmeshdistortionfortheinnerangleisdeterminedbyconstitutingEq.1.AmeshisregardedasdistortedwhenEq.1islessthanπ/3orδθimaxinEq.39isgreaterthanπ/6.ThecriterionisratherstrictinordertoavoidthegeometricallimitationincaseofapplyingtheregularizationmethodinconfinedregionsvectorfQδθ1ˆe1δθ2ˆe2δθ3ˆe3δθ4ˆe41||vectorfQ||radicaltpradicalvertexradicalvertexradicalbt4summationdisplayi1δθi22δθivextendsinglevextendsinglevextendsingle12π−θivextendsinglevextendsinglevextendsingle32.1.2.AspectratiooftheelementTheidealaspectratiooftheelementsideshouldbeunitywhenthefoursidesofanelementhavethesamelength.TheaspectratioisdefinedasEq.4andthenthedistortionisdefinedwhenitislessthan5thatcouldbemuchlessforastrictcriterionmax{r12,r23,r34,r41}min{r12,r23,r34,r41}4whererijisthelengthofeachelementside.Fig.1.Processforconstructionofapatch.2.2.Domainconstruction2.2.1.ConstructionofthepatchDistortedelementsselectedbythecriteriaofmeshdistortionaredistributedinvariousregionsaccordingtothecomplexityoftheshapeofformedgeometry.Theseelementsareallocatedtopatchesconstructedfortheefficiencyofthealgorithm.TheshapeofpatchesismadeupforrectangularshapesincludingalldistortedelementsforexpandingtheregionofregularizationandapplyingtoNURBSsurfaceexplainedinnextsection.ThisprocedureisshowninFig.1.Whenholesandedgesarelocatedbetweendistortedelements,theregionsarefilleduptomakepatchesarectangularshape.ThepatchisthenmappedtoathreedimensionalfreesurfacebyusingNURBSsurface.Theprocedureisimportanttoobtainentireinformationofthecontinuouscoordinatesonthethreedimensionalsurface.NURBSsurfacecandescribethecomplexshapequicklybyusinglessdatapointsanddoesnotchangetheentiredomaindataduetothelocalchange.2.2.2.NURBSsurfaceNURBSsurfaceisgenerallyexpressedbyEq.5astheporderintheudirectionandtheqorderinthevdirection10Su,vsummationtextni0summationtextmj0Ni,puNj,qvwi,jPi,jsummationtextni0summationtextmj0Ni,puNj,qvwi,j5wherePi,jisthecontrolpointsastheu,vdirection,wi,jtheweightfactorandNu,pu,Nj,quthebasisfunctionthatareexpressedbyEq.6Ni,0braceleftBigg1ifui≤u≤ui1,0otherwise,Ni,puu−uiuip−uiNi,puuip1−uuip1−ui1Ni1,p−1u6Inordertomapthenodesfromthepatchesontotheconstructedsurface,anumberofpointsarecreatedfortheircoordinatesontheNURBSsurface.Thelocationofeach618J.H.Yoon,H.Huh/JournalofMaterialsProcessingTechnology1402003616–621Fig.2.Selectingdirectionofdistortedelements.movingnodebyapplyingaregularizationmethodisdeterminedsuchthatthelocationofapointhastheminimumdistancebetweennodesonNURBSsurface.Theinformationonthecoordinatesofthenodalpointstobemovedisstoredtoconstructanewmeshsystem.2.3.RegularizationprocedureTheregularizationmethodiscarriedoutwiththeunitofapatchthatformsarectangularshape.FiniteelementstoberegularizedisselectedbytheorderofFig.2.Eachselectedelementisdividedbytwotriangularelementsandthenthedividedelementismadeofarighttriangularelementbyrelocatingthevertexonthecirclehavingthediameterfromvectorx1tovectorx2asshowninEq.7andFig.3.Whentheprocedureterminates,thesameprocedureisrepeatedintheoppositedirectionvectorx1vectorx22vectorxcen,|vectorx1−vectorx2|2r,vectorxcur−vectorxcenvectorxdir,vectorxnewvectorxdir|vectorxdir|rfactorvectorxcen7ThefinallocationofanoderelocatedbyusingtheregularizationmethodissubstitutedforthelocationofapointonNURBSsurface.Aftertheregularizationprocedureisfinished,asimplesoothingprocedureiscarriedoutbyEq.8fortheroughregiongeneratedduringtheFig.3.Regularizationschemebymovingnodes.procedurePNsummationtextNi1AiCisummationtextNi1Ai8wherePNisthecoordinateofanewnode,AitheareasofadjacentelementsandCithecentroidoftheadjacentelements.2.4.LevelofdistortionAsadistortionfactor,levelofdistortionLDisnewlyproposed.LDcanbeusedtoevaluatethedegreeofimprovementintheelementqualityLDAB9whereAsummationtext4i1|sinθi|4,BtanhparenleftbigkBprimeparenrightbig10Bprimemin{r12,r23,r34,r41}max{r12,r23,r34,r41},ktanh−1βα11LDhasthevaluebetween0and1whenLD1,theelementisanidealelementofasquareandwhenLD0,thequadrilateralelementbecomesatriangularelement.θiarethefourinneranglesofanelement,soAisthefactorfortheinnerangle.BisthefactorfortheaspectratioofelementsidesandisdefinedbythehyperbolictangentfunctioninordertomakeLDlesssensitivetothechangeofB.Forexample,whenthereasonableaspectratiooftheelementsideis14,thevalueofBcanbeadjustedbyapplyingα0.25andβ0.6suchthattheslopeofthefunctionBischangedabruptlyaroundthevalueofBprime0.25.Consequently,thevalueofLDdecreasesrapidlywhentheaspectratioBprimeislessthan0.25whilethevalueofLDincreasesslowlywhentheBprimeisgreaterthan0.25.ThisschemecanregulatetheinnerangleandtheaspectratiotohavetheequaleffectontheLD.2.5.MappingofthestatevariablesWhentheregularizedmeshsystemisusedforthenextcalculationoftheforminganalysisorthestructuralanalysis,mappingofthestatevariablesisneededformoreaccurateanalysisconsideringthepreviousforminghistory.Themappingprocedureistomapthecalculatedstatevariablesintheoriginalmeshsystemontotheregularizedmeshsystem.AsshowninFig.4,asphereisconstructedsurroundinganewnodesuchthatthestatevariablesofnodesinthespherehaveaneffectonthestatevariablesofthenewnode.ThestatevariablesofthenewnodearedeterminedfromthestatevariablesoftheneighboringnodesinthespherebyimposingtheweightingfactorinverselyproportionaltothedistancebetweenthetwonodesasshowninEq.12Vcsummationtextmj1Vj/rjsummationtextmi11/ri12J.H.Yoon,H.Huh/JournalofMaterialsProcessingTechnology1402003616–621619Fig.4.Controlsphereformappingofthestatevariables.whereVjisthestatevariablecalculatedontheoriginalmeshsystem,andrjthedistancebetweenthenewnodeandtheneighboringnodes.3.Numericalexamples3.1.ForminganalysisofanoilpanWhileoilpansareusuallyfabricatedwithatwostageprocessinthepressshop,thepresentanalysisiscarriedoutwithasinglestageprocessasshowninFig.5thatdescribesthepunchanddieset.Theregularizationmethodcanbeappliedtothefiniteelementmeshsystemwheneverneededforenhancementofthecomputationefficiency.Inthisexamplefordemonstration,themethodisappliedtotheanalysisofoilpanformingattwoformingintervalsforregularizationofdistortedmeshesasdirectedinFig.6.Fig.7explainstheprocedureoftheregularizationmethod.Fig.7ashowsthedeformedshapeatthepunchstrokeofFig.5.Punchanddiesetforoilpanforming.60forming6080forming100formingRegularizationRegularizationFig.6.Applyingtheregularizationmethodtotheforminganalysis.Fig.7.Procedureofregularizationasearchingdistortedelementsbconstructingpatchesfordistortedelementscregularizationofdistortedelements.60andthreepartsofmeshdistortionbytheformingprocedure.Itindicatesthatthenumberofpatchestobeconstructedis3.Distortedmeshesareselectedaccordingtothetwogeometricalcriteriaformeshdistortion.AndthenthepatchesofarectangularshapeareformedtoincludealldistortedelementsasshowninFig.7b.Finally,theelementsinthepatchesareregularizedasshowninFig.7c.Inordertoevaluatethedegreeofimprovementintheelementqualityafterapplyingtheregularizationmethod,thevalueofLDfortheregularizedmeshsystemiscomparedtheonefortheoriginalmeshsystem.TheLDvaluesfortheregularizedmeshsystemhaveuniformdistributionthroughouttheelementswhilethosefortheoriginalmeshsystemhavewidevariationasshowninFig.8.Itmeansthatthequalityoftheregularizedmeshsystemisenhancedwiththesameleveldistortion.Consequently,explicitfiniteelementcomputationwiththeregularizedmeshsystemcanbeprecededwithalargerincrementaltimestepasshowninFig.9.Inthisanalysisofoilpanforming,thecomputingtimewiththeregularizedmeshsystemisreducedabout12evenaftertwotimesofregularization.Theamountofreductioninthecomputingtimecanbeincreasedwithmorefrequentregularization.3.2.CrashanalysisofafrontsidememberThecrashanalysisisusuallycarriedoutwithoutconsideringtheformingeffectandadoptsthemeshsystemapartformtheforminganalysis.Incasethattheformingeffectisconsideredtoimprovetheaccuracyandreliabilityoftheanalysisresults,themeshsystemfortheforminganalysiscouldbedirectlyusedinthecrashanalysisfortheefficiencyoftheanalysis.Themeshsystemaftertheforminganalysis,

注意事项

本文(外文翻译--提高板材成形效率的坐标网分析法 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5