欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--电液混合的动力单元 中文版.pdf

    • 资源ID:97515       资源大小:411.01KB        全文页数:6页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--电液混合的动力单元 中文版.pdf

    HybridHydraulic-ElectricPowerUnitforFieldandServiceRobotsKurtAmundson,JustinRaade,NathanHarding,andH.KazerooniDepartmentofMechanicalEngineeringUniversityofCalifornia,Berkeley,California,94720,USAexoberkeley.edu,http:/bleex.me.berkeley.eduAbstract-Energeticautonomyofahydraulic-basedmobilefieldrobotrequiresapowersourcecapableofbothelectricalandhydraulicpowergeneration.Whilethehydraulicpowerisusedforlocomotion,theelectricpowerisusedforthecomputer,sensorsandotherperipherals.Aninternalcombustionenginewasusedastheprimemoverduetothehighenergydensityofgasoline.TheprimaryspecificationforthishybridHydraulic-ElectricPowerUnit(HEPU)isthatitmustoutputconstantpressurehydraulicpowerandconstantvoltageelectricpower.Anon-boardcomputerusesapressuresensorandaspeedsensortoregulatethepressureandvoltagebymodulatingahydraulicsolenoidvalveandanenginethrottle.Thespeedregulationalsoresultsinasystemnoisewithpredictablefrequencybandwhichallowsforoptimalmufflerdesign.Anovelcharacteristicofthispowersourceisitscoolingsysteminwhichhydraulicfluidisusedtocooltheenginecylinders.Severalhydraulic-electricpowerunitswerebuiltandsuccessfullydemonstratedontheBerkeleyLowerExtremityExoskeleton(BLEEX)shownonbleex.me.berkeley.edu/bleex.htm.Aprototypepowerunitweighs27Kg,outputs2.3kW(3.0hp)hydraulicpowerat6.9MPa(1000psi),and220Wofelectricpowerat15VDC.IndexTerms-mobilepowersources,hydraulicpower,powergeneration,fieldandservicerobotics,BLEEXI.INTRODUCTIONCurrentlymosthumanscaleandfieldroboticsystemsarepoweredbytethersorheavybatterysystems.Inorderforaroboticdevicetoobtainenergeticautonomyfreefromtethersandheavybatteries,acompact,portablepowerunitprovidingbothmechanicalpowerforactuationandelectricalpowerforcomputationandcontrolisessential.Batteriesareacommonpowersourceformobilerobots.TheNiMHbatterypackinASIMO,Hondashumanoidwalkingrobot1,isonesuchexample.However,batterieshavealowspecificenergy(energypermass):0.5MJ/kgforahighperformancelithiumionbattery2.Duetothislowspecificenergy,batteriesbecomelargeandheavyunlesstheoperationtimeisshortortheroboticsystemrequireslittlepower.Afuelwithahigherspecificenergythanbatteriesisdesirableinamobileroboticsystem.PreviousworkattheUniversityofCalifornia,Berkeleyfocusedontheuseofamonopropellant-poweredfreepistonhydraulicpump2,3.Thissystemgenerateshydraulicpowerthroughdecompositionof90%-concentratedhydrogenperoxide.Monopropellantsaremoreenergeticthanbatteriesbuttheirspecificenergy(1.2MJ/kgfor90%-concentratedhydrogenperoxide)issignificantlylowerthanthatofafuelsuchasgasoline(44MJ/kg).Simplicityisakeyadvantageofmonopropellants.Thesystemrequiresnopremixing,aircompression,ignition,orcoolingsystem.Alloneneedsistocontroltheamountofmonopropellantfuelthroughasolenoidvalveviaacomputertocreateaproperpressuredifferentialinthetworeactors.Howevertherelativelylowspecificenergy,thesubstantialrequiredsafetyfeatures,andthefuelcostpreventedusfromfurtherpursuingmonopropellantbasedpowerunitsforroboticapplications.See4,5foranothernovelutilizationofmonopropellantinwhichfuelisdirectlyconvertedtomechanicalpower.Internalcombustion(IC)enginesutilizethehighspecificenergyofgasoline.Thepowerunitdescribedhereutilizesatwo-strokeopposedtwincylinderICenginetoproduceacompact,lightweightpowersource.ThisisprimarilymotivatedbythefactthatICengineshavebeentheprimarysourceofpowerforautomobiles,earthmovingmachinery,motorcycles,andotherwheeledvehicles.Weenvisionmobilefieldrobotsasanotherclassofthesefieldvehiclesthatoperateoutdoorsforperiodsofhours.InfactseveralfieldandserviceroboticsystemshavealreadyexperimentedwithICenginesastheirprimemover6-8.ICengines,unfortunately,areloud.HoweveritisourbeliefthatcurrentlowvolumemarketandsmalldemandforsmallICengineshavepreventedthedevelopmentofthetechnologiesthatleadtoefficientandquietsmallenginesforfieldroboticsystems.LargevolumefieldandmobileroboticsystemswillleadtodevelopmentofquietandefficientIC-engine-basedpowerunits.Infact,bothHondaandYamahahavealreadydevelopedsmall,efficient,andquietIC-engine-basedportableelectricpowerunitsfornon-roboticoutdoorapplicationswithanoptimizedstructureandmufflerthatproduceameasured75dbnoiseat5ft.Thispaperdescribesthebasicdesignchallengesofagenerichydraulic-electricpowerunit(HEPU)forroboticapplications.AlthoughthedesignspecificationsforthispowerunitwerederivedfromtheoperationalrequirementsofBLEEX9-11,thedesignrulesapplytootherfieldroboticsystems.Thearchitecture,hydraulicandelectricpowergeneration,coolingsystemandcontrolaredescribedindetail.Experimentaldataarepresentedtoshowthesystemperformance.ThisworkispartiallyfundedbyDARPAgrantDAAD19-01-1-0509.II.HEPUSPECIFICATIONSThedesignrequirementsforamobilefieldableroboticsystemarefunctionsoftherobotsize,itsmaneuveringspeed,anditspayloadcapability.ThedesignofthehybridpowerunitdescribedherewasmotivatedbytherequirementsoftheBLEEXproject9-11.Afterdesigningseveralpowerunits,wehavecometorealizethatmobileroboticsystemswithsimilarweightandsizetoBLEEXwillrequirepowersourceswiththesamecharacteristicswhichdifferonlynominally.ThemainfeatureofBLEEXandmanyotherfieldroboticsystemsthateffectsthedesignoftheirpowerunitsistheloadcarryingcapabilityinthefield.Whilemanywalkingsystems12,13aredesignedtocarryonlytheirownweight,BLEEXwasdesignedtocarryexternalloads.Whilehighpressurehydraulicsoftenleadstolesspowerloss,wechose6.9MPa(1000psi)asthesystempressure.Thisleadstomorereasonablehydrauliccomponentsformobilesystemsthatneedtoworkinthefieldandperhapsinproximityofhumans.Werecommendhigherworkingpressure(e.g.20.7MPaor3000psi)ifsafeandappropriatehydraulicdeliverycomponentscanbeincorporatedinthesystem.Thehydraulicflowrequirementsareusuallycalculatedusingthespeedcharacteristicsoftherobot.Highspeedmovementsleadtolargehydraulicflowrequirements.InthecaseoftheBLEEXproject,thewalkingspeedfromCGA(clinicalgaitanalysis)data9resultedin20LPM(5.2GPM)ofhydraulicflow.Ourexperienceinbuildingvariousexoskeletonsystemssuggestthatonerequiresapproximately220Wofelectricpowerforon-boardrobotcomputersandsensorsinadditiontothepowerunitsensorsandcontroller.ThemasstargetoftheHEPUis23kg(50lbs)toallowforasignificantpayloadcapacity.Table1summarizesthepowerunitspecifications.TABLE1HYDRAULICELECTRICPOWERUNIT(HEPU)SPECIFICATIONSFORBLEEXHydraulicFluidPower2.3kW(3.0hp)ElectricalPower220WHydraulicFlow20LPM(5.2GPM)WorkingPressure6.9MPa(1000psi)MassTargetLessthan23kg(50lbs)MaximumNoiseLevel78dBAat1.5m(5ft)III.OVERALLHEPUARCHITECTURETheHEPUisdesignedtoprovideelectricandhydraulicpower.Itusesacompacttwo-strokeopposedtwincylinderICenginecapableofall-angleoperation.Fig.1andFig.2showhowtheengine(1)drivesasingleshaft(2)topoweranalternator(3)forelectricpowergeneration,acoolingfan(4)foraircirculation,andagearpump(5)forhydraulicpowergeneration.Thissingleshaftdesignelegantlyavoidsnoisyandheavybeltdrivemechanismscommoninsystemscomprisingmanyrotatingshafts.Ahydraulicsolenoidvalve(7)regulatesthehydraulicfluidpressurebydirectingthehydraulicflowfromthegearpumptoeitheranaccumulator(10)ortothehydraulicreservoir(13).Theaccumulatorconsistsofanaluminumcylinderinwhichafreepistonseparatesthehydraulicfluidfromthepressurizednitrogengas.Acarbonfibertank(11)isattachedtothegassideoftheaccumulatorasreservoirforthenitrogengas.Ingeneralthelargerthevolumeofthisgasreservoiris,thesmallerthepressurefluctuationwillbeinthepresenceofhydraulicflowfluctuations.Apressuretransducer(9)measuresthepressureofthehydraulicfluidforthecontroller.Amanifold(6)isdesignedtohouseboththesolenoidvalve(7)andfilter(8).Anovelliquidcoolingschemeutilizesthereturninghydraulicfluiditselftocooltheengine.Thehydraulicfluidfromtherobotactuatorsisdividedintotwopaths.Approximately38%ofthehydraulicfluidisdivertedtocooltheenginecylinders.Aheatexchanger(12)removestheheatfromthishydraulicfluidbeforeitreachesthehydraulicreservoir(13)andismixedwiththeremaining62%ofthefluid.Accumulator(10)GearPump(5)Two-StrokeEngine(1)HeatExchanger(12)HydraulicReservoir(13)ServovalvesandActuatorsHeatExchangerBypass12.5LPM(3.2GPM)7.5LPM(2.0GPM)20LPM(5.2GPM)NitrogenTank(11)Shaft(2)ABSolenoidValve(7)Alternator(3)CoolingFan(4)ShaftHydraulicNitrogenFilter(8)PressureTransducer(9)Manifold(6)Fig.1HEPUschematiclayout.ComponentslabeledwithnumbersinparenthesesalsocorrespondtoFig.2.IV.MECHANICALPOWERPRODUCTIONThetwo-strokeopposedtwincylinderICengine(model80B2RV,manufacturedbyZDZModelMotor)capableofproducing6kW(8.1hp)ofshaftpowerat8200rpmisusedastheprimemoverofthispowerunit.Thisenginehasan80cm3displacementandweighsonly2kg(4.4lbs).Sincethegearpumpwaslimitedtoturnatmaximumspeedof6300rpmandsinceweintendednottoutilizeanytransmissionspeedreducerinthispowerunit,wewereforcedtodrivetheengineatspeedslowerthanthemaximum-powerspeedoftheengine.Theenginecanproduceapproximately3.06kW(4.0hp)at6300rpmwhichisgreaterthantherequiredpower(2.5kWor3.4hp).Ingeneral,usingalargerengineatlowerspeedsresultsinlessnoisethanusingasmallerengineathigherspeeds.Theengineiscontrolledwithaservomotormountedtoitsthrottle.Theenginedirectlydrivesanalternator,acoolingfanandagearpump.Thepump(modelWP03-B1B-032L-20MA12,manufacturedbyHaldex)hasa3.2cm3displacementvolumeperrevolutionandthereforeintheoryitcantransfer20.2LPM(5.3GPM)offlowatitsmaximumspeedof6300rpm.3148561311101279214151617Fig.2HEPUphysicallayout.Engine(1);shaft(2,notvisible);alternator(3);coolingfan(4);gearpump(5);manifold(6);solenoidvalve(7);filter(8,notvisible);pressuretransducer(9,notvisible);accumulator(10);nitrogentank(11);heatexchanger(12);hydraulicreservoir(13);muffler(14);batteries(15);carburetorandthrottle(16);heatexchangerfans(17).Internalbafflingaroundengineisnotshownforclarity.V.CONTROLARCHITECTUREAuniquecontrolschemewasneededtomaintainconstantoperatingpressurewithafixeddisplacementpumprunningataconstantspeed.Anaccumulatorattheoutletofthepumpsuppliesthefluidtotheactuatorsandfunctionslikeacapacitortocompensatefortransientpeakflows.Thehydraulicpressureisreadbythepressuresensor.Thecomputercontrolsthesolenoidvalvetomaintainthepressure.Whenthepressurereachesthedesiredvalue(6.9MPainthiscase),thecomputerdivertsthehydraulicflowtothereservoirbymovingthevalvetopositionAasshowninFig.1.Topreventpressuredropintheaccumulatorwhenthehydraulicfluidintheaccumulatorisconsumedbytheservovalvesandtheactuators,thecomputerdivertstheflowtotheaccumulatorbymovingthevalvetopositionB.Themodulationofthisvalvebasedonthemeasuredpressureallowsthesystemtooutputhydraulicpoweratnearconstantpressure.Theoperatingpressureintheaccumulatorismaintainedinabandof6.9+/-0.2MPa(1000+/-30psi).Whenthesolenoidvalvedivertsthehydraulicfluidtothereservoir,theenginespeedincreasesrapidly.Theoppositeisalsotrue:whenthevalvedivertsthehydraulicfluidtotheaccumulator,theenginespeeddecreasesrapidlyandtheenginemightevenstall.Thevariationofenginespeedcausesexhaustsoundwithvaryingfrequenciesthatisundesirableforoptimalnoisereduction.Furthermore,theenginespeedvariationleadstoalargevoltagevariation.Additionallythehighenginespeedsmightdamagethepump.Fortheabovereasons,itisdesirabletocontroltheenginespeedtoaconstantvalue.Itwasdecidedtomaintainthespeedat6300rpm(maximumallowablepumpspeed).Insummary,anon-boardcomputerusesapressuresensorandaHalleffectsensortoregulatethepressure(at1000psi)andenginespeed(at6300rpm)bymodulatingahydraulicsolenoidvalveandanenginethrottle.VI.COOLINGSincetheenginewasdesignedforhighperformancemodelaircrafts,itrequiresalargeamountofairforcoolingitscylinders(airisgenerouslyavailablewhentheengineisinstalledonaircraftmodels.)Fortheapplicationoffieldrobotics,itisnecessarytopackagetheenginetightlyinasound-deadeningshield;thereforeliquidcoolingwasrequired.Anovelliquidcoolingschemewasdevisedthatusesthehydraulicfluiditselftocooltheengine.Theenginecylinderheadsweremodifiedtoallowhydraulicfluidtopassthroughthemandabsorbheat(Fig.3).Thismakestheadditionofawater-basedcoolingsystemunnecessaryandresultsinasimplifiedsystemwithfewercomponents.Usingthehydraulicfluidasthecoolingmediumincreasestheloadontheheatexchangersincetheheatfromtheenginemustberemovedtopreventthehydraulicfluidfromexceedingtheoperatingtemperatureofanyhydrauliccomponents.Themaximumtemperatureallowablewasdeterminedbythepumpwhichhadthelowesttemperaturetoleranceofanycomponentinthesystem(thegearpumprequiredhydraulicfluidtemperaturecoolerthan65°Cor149°F).Thefluidreturningfromtheactuatorsissplitintotwoseparatepaths,asshowninFig.4.Approximately62%ofthehydraulicfluidreturnsdirectlytothereservoir.Theremaining38%passesfirstthroughthecylinderheadswhereexcessheatisextractedfromtheengine,thenthroughaheatexchangerwheretheheatinthefluidisdissipated,andfinallyreturnstothereservoir.AsshowninFig.4,theheatexchangermustremovetheheatgeneratedfromthedissipativeeffectoftheservovalvesontheactuatorsinadditiontotheheatgeneratedintheenginecylinderheads.Increasingfluidvolumeinthereservoirincreasesconvectiveheattransfer(cooling)toambientairandallowslongeroperationtimes.Thisisatypicalsolutioninindustrialhydraulics,butisnotfeasibleinthisapplicationwherealargereservoirisundesirable.Therefore,carefulsizingoftheheatexchangerwascriticaltoensureadequatecoolingataminimumweight.Athermalmodelwascreated(usingmeasureddatafromtheteststandwheneverpossible)toestimatethebehaviorofthehydraulicsystemandevaluatethehydraulicfluidtemperatureatthemostsensitivecomponent,thepump.Datawastakenfromanexperimentalrunwiththeengineproducing3.06kWofshaftpower.Adutycycleof50%wasusedtosimulateouroperatingconditions(i.e.,1.53kWcontinuousshaftpower).Thereservoirwasmodeledasaperfectmixerwithzeroheattransfertoambient.Thepumpexhibitedaminimumof80%efficiency(shaftpowertofluidpower);hence20%oftheengineshaftpower(3.06kW*0.50*0.20=0.306kWor0.41hp)isconvertedtoheatintothehydraulicfluid.Theheattransfertoambientairinthehydrauliclineswasestimatedat-0.373kW(-0.50hp).Theactuatorsandservovalveswereassumedtoconvertallthehydraulicpowerflowingthroughthemtoheatintothehydraulicfluid(3.06kW*0.50*0.80=1.22kWor1.64hp).Thesumoftheheattransferratesfromthereservoir,pump,lines,andvalvesis12203060373115OtherQ(.).null=+=kW(1.54hp).Theheattransferratefromtheenginecylinders,EngineQnull,wasmeasuredat2.85kW(3.82hp).TheperformanceoftheheatexchangerischaracterizedbyathermalparameterKthwhichistheheattransferrateatagivenflowrateoffluiddividedbytheinitialtemperaturedifferencebetweenthehotfluidenteringtheheatexchangerandtheenvironmentatTambient.2ExchangerthambientQKTT()null=(1)ThetemperatureT4inFig.4isequaltothepumpinlettemperaturesincethereisnoheattransferinthereservoir.Atsteadystatetheheattransferfromeachcomponentcanbeexpressedbythefollowingequations.14OthertotalPQmcTT()nullnull=(2)21()EnginecoolPQmTT=nullnull(3)32()ExchangercoolPQmTT=nullnull(4)wheretotalmnullisthetotalhydraulicmassflowrate,coolmnullisthecoolingflowrate,andcPisthespecificheatofthefluid.Sinceatsteadystate:0ExchangerEngineOthersQQQnullnullnull+=(5)equations(1)(5)canbesolvedexplicitlyforthesteadystatepumpinlettemperature,T4.4ExchangerEngineOtherambientthcoolPtotalPQQQTTKmcmcnullnullnullnullnull=(6)Variousheatexchangerspecificationswereinsertedin(6)toestimatethesteadystatehydraulicfluidtemperatureandevaluatetheperformanceofagivenheatexchanger.Atsteadystatetheselectedheatexchangerremoves4.00kWandthecalculatedpumpinlettemperatureis61°C(141°F),underthemaximumallowablepumptemperature,65°C.2022181921192220213118151116Fig.3Detailoftheenginedepictingthecoolingjacketsonthecylinders.Engine(1);alternator(3);nitrogentank(11);batteries(15);carburetorandthrottle(16);hydrauliclines(18);exhaustpipe(19);coolingjacket(20);sparkplug(21);cylinderhead(22).CylinderHeadHeatExchangerActuators&ValvesPumpLinesReservoirQEngine=2.85kWQValves=1.22kWQLines=-0.373kWQPump=0.306kWQExchanger=-4.00kWT1=64.3°CT2=78.2°CT3=57.6°CT4=61.3°Cmcool=7.5LPMmtot=20LPMT1=64.3°CT1=64.3°CFig.4CoolingsystemschematicoftheHEPU.VII.ELECTRICALPOWERGENERATIONTheHEPUgenerateselectricalpowerforthesensors,coolingfans,andthecontrolcomputer.TheelectricalpowergenerationandregulationdesignisdepictedinFig.5.Thetotalelectricalsystempowerbudgetis220W,with100Wforcoolingfansand65Wforthecontrolcomputerandsensors.Theremaining55Wareexpectedtobeconsumedinlossesandotherperipheralcomponents.Athreephase,12-poleframeless,brushlessDCmotor(modelRBE-1812,manufacturedbyKollmorgen)isusedasanelectricpowergenerator(3inFig.2).Thethreephaseswereconvertedtosingle-phase,240VDCbyabridgerectifier(thebackEMFconstantofthemotoris26.9V/krpmsothatattheoperationalspeedof6300rpmtherectifiedvoltageis240VDC).TwoDC-DCconvertersareusedtocreatetwo15VDCbusvoltagestobeusedfortwosetsofcomponents.One15VDClineisusedtopowertheelectricallynoisycomponentssuchassolenoidvalves,coolingfans,andtheignitionfortheengine.Thesecond15VDClineisusedtochargeasetofbatteries,powerthecontrolcomputer,HEPUcontroller,andthethrottleservo.Theexternalpower(showninFig.5)isusedtopowerthesystemwhentheengineisoff.ThebatteryshowninFig.5powersthecontrolcomputer,HEPUcontroller,throttleservo,

    注意事项

    本文(外文翻译--电液混合的动力单元 中文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!