欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--三维桥式起重机的建模与控制 英文版【优秀】.pdf

    • 资源ID:97768       资源大小:652.65KB        全文页数:6页
    • 资源格式: PDF        下载积分:10积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--三维桥式起重机的建模与控制 英文版【优秀】.pdf

    Ho-HoonLeeDepartmentofMechanicalEngineering,UniversityofSuwon,SuwcnP.0.Box77,Seoul440-600,KoreaModelingandControlofaThree-DimensionalOverheadCraneInthispaper,anewdynamicmodelofathree-dimensionaloverheadcraneisderivedbasedonanewlydefinedtwo-degree-of-freedomswingangle.Thedynamicmodeldescribesthesimultaneoustraveling,traversing,andhoistingmotionsofthecraneandtheresultingloadswing.Foranti-swingcontrol,thispaperproposesadecoupledcontrolschemebasedonthedynamicmodellinearizedaroundthestableequilibrium.Thedecoupledschemeguaranteesnotonlyrapiddampingofloadswingbutalsoaccuratecontrolofcranepositionandloadhoistingforthepracticalcaseofsimultaneoustraveling,traversing,andslowhoistingmotions,whichisalsoprovenbyexperiments.1IntroductionOverheadcranesarewidelyusedinindustryfortransportationofheavyloads.However,thecraneacceleration,requiredformotion,alwaysinducesundesirableloadswing.Largeraccelerationusuallyinduceslargerloadswing.Loadhoistingalsotendstoaggravatetheloadswing.Thisunavoidableloadswingfrequentlycausesefficiencydrop,loaddamages,andevenaccidents.Forsafety,overheadcranesareusuallysetinmotionwiththeirloadshoistedhigherthananypossibleobstaclesandthelengthofhoistingropesiskeptconstantorslowlyvaryingwhilethecranesareinmotion.Variousattemptshavebeenmadetocontroltheloadswing.Thenumberofthecontrolinputsforacranesystemisbynaturelessthanthatofthesystemoutputs,whichmakestherelatedcontrolproblemscomplicated.Thecranecontrolconsistsofcranemotioncontrol,loadhoistingcontrol,andloadswingsuppression.MitaandKanai(1979)solvedaminimum-timecontrolproblemforswing-freevelocityprofilesofacraneundertheconstraintofzeroloadswingatthestartandendofacceleration.Ohnishietal.(1981)proposedananti-swingcontrolbasedontheswingdynamicsoftheload.Starr(1985)proposedanopen-loopcontrolalgorithm,whichrequirestheconstraintofzeroinitialloadswing.Ridout(1987)designedafeedbackcontrollawusingtherootlocusmethod.Yuetal.(1995)proposedanonlinearcontrolbasedonasingularperturbationmethod,whichisvalidonlyiftheloadmassismuchlargerthanthecranemass.MoustafaandAbou-El-Yazid(1996)discussedthestabilityofacranecontrolsystemforhoistingmotionsoftheload.Leeetal.(1997)proposedananti-swingcontrollawthatguaranteedbothrapiddampingofloadswingandaccuratecontrolofcraneposition.Alltheaboveresearchershavefocusedonthecontroloftwo-dimensionaloverheadcranesthatallowonlythetravelingandhoistingmotions;however,inmostfactoriesandwarehousesthree-dimensionaloverheadcranesarenormallyused.MoustafaandEbeid(1988)derivedadynamicmodelofathree-dimensionaloverheadcranebasedonthesphericalcoordinates(Meir-ovitch,1970andGreenwood,1988),andthendesignedatrajectory-dependentcontrolbasedonthedynamicmodellinearizedalongadesiredtrajectory.Theirlinearizedmodeliscoupledanditsparametersaredependentoncranetrajectories;thiscom-pUcatestherelatedcontroldesignsandapplications.Theircon-ContributedbytheDynamicSystemsandControlDivisionforpublicationintheJOURNALOFDYNAMICSYSTEMS,MEASUREMENT,ANDCONTROL.ManuscriptreceivedbytheDynamicSystemsandControlDivisionDecember2,1996.AssociateTechnicalEditor:R.Redfield.troladdressesonlythesuppressionofloadswing;consequently,theircontrolresultsinconsiderablepositionerrorsincranemotionandloadhoisting.Thispaperpresentsapracticalsolutiontothemodelingandcontrolofthree-dimensionaloverheadcranes,wheretheloadswing,cranemotion,andloadhoistingareconsideredalltogetherinthemodelingandcontrol.First,anewtwo-degree-of-freedomswingangleisdefinedassociatedwiththetravelandtraverseaxesofathree-dimensionaloverheadcrane.Thenanewnonlineardynamicmodelforthecraneisderivedbasedonthenewswingangledefinition.Thenewdynamicmodelisequivalenttothatofathree-linkflexiblerobothavingthefirstflexiblemode.Next,thenewdynamicmodelislinearizedaroundtheverticalstableequilibrium.Thentheresultingdynamicmodelisdecoupledandsymmetricwithrespecttothetravelingandtraversingmotionsofthecraneandthemodelparametersareindependentofcranetrajectory,whichsignificantlysimplifiesthecontrolproblems.Withthisresult,thispaperproposesanewdecoupledanti-swingcontrolschemethatguaranteesaccuratecontrolofcranepositionandloadhoistingaswellasrapiddampingofloadswingforthepracticalcaseofsimultaneoustraveling,traversing,andslowhoistingmotions.Theremainderofthispaperisorganizedasfollows.InSection2,anonlineardynamicmodelisderivedbasedonanewtwo-degree-of-freedomswingangle,forathree-dimensionaloverheadcrane.InSection3,thenonlineardynamicmodelislinearized,andthenanewdecoupledanti-swingcontrolschemeisdesignedusingtheloopshaping,rootlocus,andgainschedulingmethods.InSection4,thedecoupledcontrolschemeisappliedtoathree-dimensionalprototypeoverheadcraneforperformanceevaluation.InSection5,theconclusionsaredrawnforthisstudy.2ModelingofaThree-DimensionalOverheadCrane2.1DefinitionofGeneralizedCoordinates.Figure1showsthecoordinatesystemsofathree-dimensionaloverheadcraneanditsload.XYZisthefixedcoordinatesystemandXjYjZristhetrolleycoordinatesystemwhichmoveswiththetrolley.Theoriginofthetrolleycoordinatesystemis(x,y,0)inthefixedcoordinatesystem.Eachaxisofthetrolleycoordinatesystemisparalleltothecounterpartofthefixedcoordinatesystem.Yrisdefinedalongthegirderwhichisnotshowninthefigure.ThetrolleymovesonthegirderintheYj(traverse)directionandthegirderandYjaxismoveintheXT(travel)direction,distheswingangleoftheloadinanarbitrarydirectioninspaceandhastwocomponents:9andOy,where9isJournalofDynamicSystems,Measurement,andControlCopyright©1998byASMEDECEMBER1998,Vol.120/471Downloaded18Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmLoadFig.1Coordinatesystemsofathree-dimensionaloverheadcranetheswingangleprojectedontheXrZrplaneand9yistheswinganglemeasuredfromtheXTZTplane.Thepositionoftheload(Xm,ymZm)inthefixedcoordinatesystemisgivenbyx=X+Isin6cos6y,y,=y+lsinOy,Zm=-ICOS0cos9y,(1)(2)(3)where/denotestheropelength.Thepurposeofthisstudyistocontrolthemotionofboththecraneanditsload.Hencex,y,I,9,and9yaredefinedasthegeneralizedcoordinatestodescribethemotion.2.2DynamicModelofaThree-DimensionalOverheadCrane.Inthissection,theequationsofmotionofacranesystemarederivedusingLagrangesequation(Meirovitch,1970).Inthisstudy,theloadisconsideredasapointmass.Themassandstiffnessoftheropearealsoneglected.K,thekineticenergyofthecraneanditsload,andP,thepotentialenergyoftheload,aregivenas1»/?K=-(M,x+Myf+M,l)+-vl,(4)P=mglcos9xcos6y),(5)whereM,My,andMiarethex(traveling),y(traversing),and/(hoistingdown)componentsofthecranemassandtheequivalentmassesoftherotatingpartssuchasmotorsandtheirdrivetrains,respectively;m,g,andudenotetheloadmass,thegravitationalacceleration,andtheloadspeed,respectively;Im=xn+yl,+Zm)ISobtainedasvl=x+f+t+/cos9y9l+/ej+2(sin9,cos9yi+/cos9cos9ydIsin9sin9y9y)x+2ism9yi+lcos9y9y)y.(6)LagrangianLandRayleighsdissipationfunctionFaredefinedas1*ttiL=-M,x+Myf+M,P)+vi+mgl(cos9cosy-1)(7)F=(D,x+Dyf+D,h,(8)where£),D,andD,denotetheviscousdampingcoefficientsassociatedwiththex,y,and/motions,respectively.TheequationsofmotionofthecranesystemareobtainedbyinsertingLandFintoLagrangesequationsassociatedwiththegeneralizedcoordinatesx,9,y,6y,and/,respectively:(M,-I-m)x+mlcos9cos9y9:,mlsin9sin9y9y+msin9cos9yl+Dx+2mcos9cos9yi92msin9sin9yWy-mlsin9cos9ydl-2mlcos9Jsin9y9jy-mlsincos9y9y=/,(9)mPcos9y9x+mlcos9cos9yX+2mlcos9yi6x2mlsin9ycos9y9;t9y+mglsin9cos9y=0,(10)My+m)y+mlcos9y9y+msin9yi+Dyy+2OTcos9yi9y-mlsin9y9y=fy,(11)m/y+mlcosyymlsin0:sin5j,jfc+2mll9y+mlcos9ysin+mg/cos6sin5=0,(12)Ml+m)l+msin9cosA+msiny+A-mlcosimlbmgcos9cos9y=fi,(13)where,/j,andarethedrivingforcesforthex,y,and/motions,respectively.2.3RemarksontheDynamicModel.Thedynamicmodelforathree-dimensionaloverheadcranehasthefollowingfeaturesthankstothecharacteristicsoftheproposedswingangledescription.Wheny=y=9y=9y=9y=0,thedynamicmodelofathree-dimensionaloverheadcraneisreducedtothatofatwo-dimensionaloverheadcrane(Leeetal.,1997)movingalongtheXaxis.ThesameistruefortheYaxiswhenx=x=9=9.=h=0.Thedynamicmodelisequivalenttothatofathree-linkflexiblerobothavingthefirstflexiblemode(LucaandSiciliano,1991).Thatis,thedynamicmodel(9)-(13)canberepresentedbythefollowingmatrix-vectorform:M(q)q-I-Z)q-FC(<i,q)q-hg(q)=f,(14)wherethestatevectorq,thedrivingforcevectorf,thegravitationalforcevectorg(q),andthedampingmatrixDaredefinedasqx,y;I,9,9yY,f-(/.,/0,0)g(q)(0,0,-mgcos9cos9y,mglsin9,cos9,mglcos9sin9yY,andD=diag(D;c,D,Z);,0,0),respectively;the5X5symmetricmassmatrixA/(q)canbereadilyobtainedfromtheqtermsandispositivedefinitewhen/>0and9y<7r/2;the5X5CoriolisandcentrifugalforcematrixC(q,q)thatsatisfiesM(q)-2C(q,q)=-(M(q)-2C(,q)canbefoundfromtheqandqterms.3DesignofaControlLawInthissection,anewanti-swingcontrolschemewillbeproposed.First,thenonlineardynamicmodelwillbelinearized.Second,anewdecoupledanti-swingcontrollawwillbedesignedforthecaseofconstantropelength.Third,anindependentropelengthcontrollerwillbedesignedandagainschedulingmethodwillbeadopted,forslowlyvaryingropelength.Finally,thestabilityoftheresultingcontrolsystemwillbeanalyzedforslowlyvaryingropelength.3.1LinearizationoftheDynamicModel.Inpractice,themaximumaccelerationofoverheadcranesismuchsmallerthanthegravitationalacceleration,andtheropelengthiskeptconstantorslowlyvaryingwhilethecranesareinmotion.Thisstudyconsidersthesepracticalcases:|ji;i<g,y<g,l472/Vol.120,DECEMBER1998TransactionsoftheASMEDownloaded18Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfm<g,and|/|<|/|,whichimply|/6J«g,ie,<4g,andhencesmallswing(|(9J1and|6»,|<?1).Then|(9,|«1anddy<1arealsovalid.Forsmallswing,sin99,sin6y=By,cos9,i,andcos=1.Inthiscase,withthetrigonometricfunctionsapproximated,thehighordertermsinthenonlinearmodelcanbeneglected.Thenthenonlinearmodel(9)-(13)issimplifiedtothefollowinglinearizedmodel:(M,.+m)x+D,x+ml9,-19,+x+gO,=0,My+m)y+Dyy+mWyWy+y+gOy=0,=/;,=/v.(15)(16)(17)(18)Ml+m)l+D,l-ing=/,.(19)Thislinearizeddynamicmodelconsistsofthetraveldynamics(15)and(16),thetraversedynamics(17)and(18),andtheindependentloadhoistingdynamics(19).Thetravelandtraversedynamicsaredecoupledandsymmetric,whichmeansthatthecontrolofathree-dimensionaloverheadcraneistransformedintothatoftwoindependenttwo-dimensionaloverheadcraneshavingthesameloadhoistingdynamics.Inthisstudy,ananti-swingcontrollawwillbedesignedbasedonthetraveldynamicsandwillbeusedforthecontrolofbothtravelingandtraversingmotions,andaropelengthcontrollawwillbedesignedbasedontheloadhoistingdynamics(19).3.2Anti-SwingControlforConstantRopeLength.Inthissection,anewcontrollerdesignmethodfortwo-dimensionaloverheadcranesisproposedbasedonthelinearizedmodelusingtheloopshapingandrootlocusmethods.Theproposedmethodisfreefromtheusualconstraintsontheloadmass(Ridout,1987andYuetal.,1995).3.2.1DesignofaVelocityServoSystem.Inpractice,thedrivingforcef,foracraneisusuallygeneratedbyelectricmotorscontrolledbytorqueservocontrollers,whosedynamicscanbeneglectedsincetheyareusuallyahundredtimesfasterthanthetrolleyandgirderdynamics.Henceinpracticalcases,fj,isproportionaltou,theinputtothetorqueservocontroller:L=K,u(20)whereK,isthecrane-dependentconstant.Thenthedynamicmodel(15)and(16)canberewrittenas(21)(22)M;,x+DjtX-mgO,=K,iit,IL+X+g9,=0.First,mgdi,thecouplingterminthecranedynamics(21),isprecompensated.Thatis,u,isdesignedas=umgBJKs,(23)whereuisthenewinputtobedeterminedbelow.Thenthecranedynamics(21)canberewrittenasMxX+DxX=KgU.(24)LaplacetransformationisappliedtoEq.(24)toobtainthefollowingtransferfunction:G,s)-K.Vis)_Us)M,s+D,(25)where.vistheindependentcomplexvariable;Vs)andUs)aretheLaplacetransformsofv=x)andu,respectively.Second,avelocityservocontrollerKss)isdesignedbasedon.G,s)usingtheloopshapingmethod;first,theopen-looptransferfunctionG(.v)=K,s)G,s)sshapedasGs)=Klsaccordingtotheloopshapingcriteria(Doyleetal.,1992),velocityservocontrollertrolleydynamicsVris)*9-r"-A4s+DKsSKvs(s)u(s)KsMrS+DGt(s)V(s)Fig.2SchematicdiagramofvelocityservosystemandthentheresultingK,s)isobtainedfromK,s)=Gs)/GM:KM)=gM,s+D,K,s(26)whereKisthecontrolgain.LargerKyleadstobettercommandtracking,butKmustnotbetoolargeforrobuststabilityandsensornoiseattenuation.TheschematicdiagramofthevelocityservosystemisshowninFig.2.ThenthetransferfunctionofthevelocityservosystemG,(.?)isobtainedasG,(.v)-VKV,s+K,(27)whereV,.denotesthereferenceinputtothevelocityservosystem.Thecranemotorsaresometimescontrolledbyvelocityservocontrollersinsteadofthetorqueservocontrollers.ThenthedesignmethodproposedbyLeeetal.(1997)canbereadilyapplied.3.2.2DesignofaPositionServoSystem.Figure3showstheschematicdiagramofthepositionservosystem,whereK,ss)isthepositionservocontroller,G,(i)isthevelocityservosystem,Ds)isthevelocitydisturbances,andl/.sistheintegratorforconversionofcranevelocitytocraneposition.TheslipofcranewheelsisanexampleofD(.y).Asabove,A.(.v)isdesignedbasedonGy,s)usingtheloopshapingmethod;theopen-looptransferfunctionG,o(s)=Ks)Gyss)/s)isshapedasG.,s)Ks+K,/KpKSSS+Ky(28)whereKpandK,aretheconstantssatisfyingKilKp<K,</f;Kj,isthecrossoverfrequencyofG(i).ThenthepositionservocontrollerAs)canbeobtainedfromK.s)=sGos)/G.,s):KpS+K,)KAs)=(29)Theresultingclosed-looptransferfunctionG(,?)isthengivenasG.s)-XKyKpS+K,)X,?-I-KyS+KyKpS+KyK,(30)whereXandX,.aretheLaplacetransformsofxandx,.,thereferenceinputtothepositionservosystem,respectively.Dv(s)positionservovelocitycontrollerservosystemJKpS+KisK(s)KvS+KyG.,(s)+1+1sX(s)Fig.3SctiematicdiagramofpositionservosystemJournalofDynamicSystems,Measurement,andControlDECEMBER1998,Vol.120/473Downloaded18Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfm3.2.3DesignoftheOverallControlSystem.Figure4showstheoverallcontrolsystem,whichconsistsofthepositionservosystemGsis),theswingdynamicsoftheloadG,(s),andtheanti-swingcontrollerKe(s);G,(s)isobtainedfromEq.(22):G,(s)(s)-sX(s)Is+(31)where0(.s)istheLaplacetransformof9.Kfs)isdesignedbasedonGj,(,s)andGiis)usingtherootlocusmethod;therootlocusoftheoverallcontrolsystemisshapedasthatshowninFig.5byplacingthepolesandzerosofKg(s)intheproperplaces.ThentheresultingKsis)isgivenasKe(s)=Ks+Kss+K,iKpS+K,(32)whereKisthecontrolgain;KandKjaretheconstantssatisfyingK>K>0;slKpSH-K,)isadoptedonpurposetocancelKpS+Ki)lsofKsis).ThenKgs)becomesalagcompensatorwhentheoutputofKDS)isdirectlyinputtedtothevelocityservosystemGis).Inthisway,theswingangleandcranemotioncanbeseparatelycontrolled.Figure5showstherootlocusoftheoverallcontrolsystemfor/=1m,K,=24.0,Kp=1.6,K,=0.08,K=1.5,andK=0.6.TheoptimumvalueofKacanbedeterminedfromtherootlocus.TheoverallcontrolsystemisshowntobestableregardlessofthevalueofK,.However,thesystemmaybecomeunstableforalargevalueofK,sincethenonlineardynamicswereneglectedinthelinearizationprocess.3.2.4RemarksontheControlPerformance.TheperformanceoftheoverallcontrolsystemcanbeanalyzedusingthetransferfunctionsfromeachinputtoeachoutputinFig.4.ThetransferfunctionsforZ=1mandKa=3.55withthecontrolgainsobtainedaboveareasfollows:X38.4(s+0.05)(s+0.6)(j+9.8)-38.4"(j+0.05)(s+0.6)Gcis)s(s+0.6)(s+24)(s+9.8)0XrA"GAs)©_-ss+0.6)(5+24)(33)(34)(35)(36)whereGds)isdefinedasG,(.s)=(s+0.05)(s+O.S2)(s+3.1)X(s+n.26)(s+1.69)+1.47.(37)Asexpected,theclosed-looppolesshowninGs)areallstablewithsufficientdamping;accordingly,soarethetransferfunctions(33)-(36).X/XshowsexcellentcommandtrackingrealaxisFig.5Rootlocusoftheoverallcontrolsysteminthelowfrequencyregion.0/X,showsthatthesteadystateswingangleiszeroforramppositioncommands.AccordingtoX/Dand&/D,thesteady-statecranepositionisnotinfluencedbystepdisturbancesandthesteadystateswingangleisnotaffectedbyparaboladisturbances.3.3Anti-SwingControlforSlowlyVaryingRopeLength.Anewdecoupledanti-swingcontrollawhasbeendesignedaboveforthecaseofconstantropelength.Inpractice,however,theropelengthsometimesneedstobesetslowlyvaryingforloadhoistingwhilecranesareinmotion.Accordingly,thispracticalcasewillbeconsideredhere.3.3.DesignofaRopeLengthServoController.Aswiththecranedynamics(21),theloadhoistingdynamics(19)canbewrittenas(Ml+m)l+D/l-mg=K,iU,i,(38)whereu,iistheinputtothetorqueservocontrollerofthehoistingmotorandKiisthecrane-dependentconstant.Asabove,aprecompensatorisdesignedfirst.Thatis,u,iinEq.(38)isselectedasu=u,-mglK,i(39)whereUiisthenewcontrolinputtobedetermined.Thentheloadhoistingdynamics(38)becomes(Af,+m)l+D,l=K,u,.(40)Fig.4SchematicdiagramoftheoverallcontrolsystemThedynamics(24)and(40)areofthesamestructure.Thereforearopelengthservocontrolsystemcanbereadilydesignedbyfollowingthedesignproceduresforthecranepositionservocontrolsystem(30).Thehoistingmotorsaresometimescontrolledbyvelocityservocontrollersinsteadofthetorqueservocontrollers.ThenthedesignmethodproposedbyLeeetal.(1997)canbereadilyapplied.3.3.2GainSchedulingforSlowlyVaryingRopeLength.Thevelocityandpositionservocontrolgainsaredeterminedindependentlyoftheropelength.However,theanglegainsK,K,andKjneedtobeadjustedtochangesinropelength.Inthisstudy,againschedulingmethodisadoptedtocopewithslowlyvaryingropelength.Thatis,foreachselectedropelengthI,theoptimumvaluesofK,K,andKaredeterminedfromtherootlocusoftheoverallcontrolsystem,andthentheanglegainfunctionsKl),Kil),andKl)areobtainedfromtheoptimumvaluesusingthecurvefittingtechnique.Theyarefunctionsoftheropelength/;hencetheyareusedinreal-timecontrolaccordingtoreal-timeropelength.3.4StabilityAnalysisforSlowlyVaryingRopeLength.Theropelengthisindependentlycontrolledsincetheloadhoistingdynamics(19)isindependentofcranemotionandloadswing.Asaresult,thecranecontrolsystemisstableiftheoverallcontrolsystemshowninFig.4isstableforslowlyvaryingropelength.474/Vol.120,DECEMBER1998TransactionsoftheASMEDownloaded18Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfm

    注意事项

    本文(外文翻译--三维桥式起重机的建模与控制 英文版【优秀】.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!