欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--在液压系统中测量压力波传播速度 英文版【优秀】.pdf

    • 资源ID:97812       资源大小:668.59KB        全文页数:7页
    • 资源格式: PDF        下载积分:10积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--在液压系统中测量压力波传播速度 英文版【优秀】.pdf

    AbstractPressurewavevelocityinahydraulicsystemwasdeterminedusingpiezopressuresensorswithoutremovingfluidfromthesystem.Themeasurementswerecarriedoutinalowpressurerange(0.26bar)andtheresultswerecomparedwiththeresultsofotherstudies.Thismethodisnotasaccurateasmeasurementwithseparatemeasurementequipment,butthefluidisintheactualmachinethewholetimeandtheeffectofairistakenintoconsiderationifairispresentinthesystem.Theamountofairisestimatedbycalculationsandcomparisonsbetweenotherstudies.Thismeasurementequipmentcanalsobeinstalledinanexistingmachineanditcanbeprogrammedsothatitmeasuresinrealtime.Thus,itcouldbeusede.g.tocontroldampers.KeywordsBulkmodulus,pressurewave,soundvelocity.I.INTRODUCTIONRESSUREwavevelocity(soundvelocity)isanimportantfactorwhenhydraulicsystemsareanalyzedanddevised.Itisaparameterinmanyequationsthatmodelthedynamicsofhydraulicsystemsanditisalsoanimportantparameterwhendampersofhydraulicsystemsaredimensioned.Withthehelpofpressurewavevelocitythebulkmodulusofahydraulicsystemcanbedefined,orviceversa.Differentmeansformeasuringpressurewavevelocityarepresentedinmanystudies.Normallythesemeasurementsarecarriedoutinseparatemeasurementequipment,sothatthemeasuredfluidisremovedfromtheoriginalmachine.Thisaffectscertaincharacteristicsofthefluid,suchastheamountofairormoistureconcentration,andtheresultsofpressurewavevelocitymeasurementsmaydifferfromtheoriginalsituation.Separatewavevelocitymeasurementinstrumentationisveryoftendesignedinsuchawaythatatleastentrainedaircanberemovedfromthemeasuredfluid.Thus,theresultsofmeasurementdonottaketheeffectofairintoconsideration,oronlydissolvedairisnoticed.Thisdoesnotcorrespondtorealsystems,becauseairispresentinfluids,especiallyatlowpressures.Separatepressurewavemeasurementequipmentusuallycannotbeconnectedtothemachine,soreal-timemeasurementofwavevelocityisimpossible.Inmanyearlierstudiespressurewavevelocityhasbeenmeasuredwithultrasonictransducers.Theultrasoundtechniquemaybebasedon,e.g.time-of-flightorpulse-echoprinciples.Thismethodisveryaccurate;anaccuracyofeven±0.005m/scanbeachieved,1althoughlargererrorshavealsobeenpresentedintheliterature2-4.Benefitsoftheultrasoundtechniqueare,e.g.long-termstability,precision,sensitivity,capabilityofapplyingtoopticallyopaque,concentratedandelectricallynon-conductingsystemsandthepossibilitytoautomatethemeasurement.However,instrumentationdesignandthesamplestudiedmayaffecttheaccuracyofthemethod.5.Anothermethodfordefiningpressurewavevelocityistomeasurethebulkmodulusofafluidusingamethodbasedondeterminationofthevolumechangeofthesampleundercompressionorexpansion.6-9.Useofthistechniquepreventsunwantedpressuregradientsbetweenthesampleandthesurroundingsystem.Theusefulpressurerangeofthemethodiswide(0.1-350MPa).Theamountofentrainedaircanalsobetakenintoconsideration.Drawbacksofthemethodaretheneedtofirstdeterminethespecificvolumeofthesampleunderatmosphericpressureandtheobviousrequirementofmeasuringthedensityofthesampleunderallthepressuresused.Thus,thismethodcannotbeusedforcontinuousreal-timemeasurements.Calculationofthebulkmodulusandfurthermorethepressurewavevelocity(soundvelocity)isshownin(1)and(2)inchapterII.Someresearchershaveusedpressuretransducerstodetectpressurewavevelocitiesinoils.HarmsandPrinke10presentedamethodbasedonphasedifference.Inthismethodexcitationshouldbeconstant,e.g.pumprippling,becausethesignaliscomparedattwopointsandthevalueofthewavevelocityiscalculatedfromthetimedifferenceofthesesignals10.Choetal.11andYuetal.12measuredthewavepropagationtimeandcalculatedacross-correlationfunctionofthepressuresignals.Methodsbasedonpressuremeasurementsmakereal-timemeasurementspossibleandtheinfluenceofaircanbetakenintoconsideration.YetanothermethodfordeterminingpressurewavevelocitywaspresentedbyApfel13.Thismethodisatechniquethatmeasurestheadiabaticcompressibilityanddensityofafluidwhenthesampleamountsareextremelysmall,4nl-4l.Pressurewavevelocitiescanbecalculatedfromthesedata.Thismethodisapplicable,e.g.forsupercooledorsuperheatedsamples,biologicalorhazardoussamplesorineverycasewhenthebulkpropertiesoffluidshavetobedeterminedfromsmallsampleamounts.Thefluidstudiedisacousticallylevitatedonanimmisciblehostliquidatacertainspotofthetestequipment.Areferencemeasurementofafluidwhosepropertiesarewell-knownismadeattheexactsamespot.Theresultsarerelativelyaccurate(withina2%margincomparedwiththesamevaluesdeterminedbytraditionalmethods).Inordertocalculatepressurewavevelocities,thedensityoftheMeasuringPressureWaveVelocityinaHydraulicSystemLariKela,andPekkaVähäojaPWorldAcademyofScience,EngineeringandTechnology492009610samplehastobemeasuredusingdifferentequipment.Obviously,thismethodissuitableforlaboratoryexperimentsonly.13-14.Pressurewavevelocity(soundvelocity)canbeusedtoevaluatevariousimportantcharacteristicpropertiesoffluids.Forinstance,ithasbeenusedtodeterminetheconcentrationofsolventsinoils4,tocalculatethephysicalpropertiesofhydraulicandotherlubricatingfluids,aswellasfueloils7,15-17,toestimatethestructuralandmechanicalpropertiesoffats18andthephysicalpropertiesofpetroleumfractionsandpetroleumreservoirfluids3,5andtodeterminethecompositionofoil-watermixturesandemulsions2ortomeasurethepropertiesofmagnetorheological(MR)fluids19.Themostimportantaimofthisstudywastodevelopamethodformeasuringpressurewavevelocitythatenablesreal-timemeasurements,whicharenecessaryif,e.g.real-timecontrolsystemsforhydraulicsareconstructed.AnotheraimwastocollectdataforfutureresearchwithaHelmholtzresonatorattachedtothissystem.II.THEORETICALASPECTSOFPRESSUREWAVEVELOCITYDETERMINATIONSThebulkmodulusofelasticmaterialBisdefinedasthequotientofpressurevariationandrelativevolumevariationaffectedbypressurevariationB=VdVdP(1)wherePispressureandVisvolume20.Pressurewavesconsideredinthispaperaresimilartowavesthatproduceaudiblesound.Thus,pressurewavesarehandledaslongitudinalvibrationmoleculesmovingbackandforthinthedirectionofpropagationofthewave,producingsuccessivecondensationsandexpansionsinthemedium.Thesealterationsofdensitiesaresimilartothoseproducedbylongitudinalwavesinabar.Asseeninmanystudies,mentionedalsointhispaper,thedifficultyofthemathematicsissidesteppedbyrestrictingthewavesunderconsiderationtoonedimension.21.Itisworthnotingthatatravellingwavedoesnotcarrymaterial,justthewaveanditsenergymove.Choetal.11havepresentedthreedefinitionsforbulkmodulus,whicharewidelyusedinmanytextbooks.Thesedefinitionsareonlyapplicabletotheirownspecificconditions,andinthispaperthesonicbulkmodulus(2)isused,whichhasthesamevalueastheadiabaticbulkmodulus.ThesonicbulkmodulusBisderivedfromthesonicvelocityinthefluidandfluiddensity11,20B=a2(2)whereisdensityandaiswavevelocity(soundvelocity).Equation(2)canbesolvedforthebulkmodulusorwavevelocity,dependingonwhichoneistheknownfactor.Inthispaperdensityisknownandwavevelocityismeasured,sothebulkmoduluscanbecalculated.Butas(2)presents,thesameparametersthataffectthevalueofwavevelocityalsoaffectthebulkmodulusandthisistakenintoconsiderationinthetheoryreview.Themainfactorsthataffectthevalueoftheeffectivebulkmodulusofahydraulicsystemarefluidpressureandtemperature.TheireffectsarepresentedinFig.1.Otherfactorsthataffectthevalueoftheeffectivebulkmodulusare,e.g.theaircontentofthefluid,piperigidityandinterfaceconditionsbetweenthefluidandtheair12.Fig.1Effectoftemperatureandpressureonwavevelocityinanoilsample:335.1K,370.7K,402.1K5Partoftheaircontentdissolvesinamolecularformandtherestofit,entrainedair,existsintheformofsmallbubbles.Dissolvedairhasonlyalittleeffectonthebulkmodulus11,butthevolumetricpercentofentrainedairwithinafluidisoneofthemostinfluentialvariableswhenthebulkmodulusisevaluated.Ithasbeenprovedthatonepercententrainedaircanreducetheeffectivebulkmodulusofafluidbyasmuchas1085MPa,whichcorrespondstoa75percentdecreaseinthefluidmanufacturersvalue22.Itshouldbenotedthatalsoothergases,notonlyair,affectthebulkmodulusandsonicwavevelocity,andthetypeofgashasagreatereffectthandoesthequantityofthegas23.Thelowerthemolecularweightofthegas,thegreatertheeffectonthesonicwavevelocity23.Fluidpressurehasaneffectonthevalueofthebulkmodulus,particularlyinthelowerrangeofpressure.Onereasonfortheeffectofpressureonthebulkmodulusistherelationshipbetweenentrainedaircontentanddissolvedaircontentinafluid.Someentrainedairbecomesdissolvedairwhenpressureincreases.12.Theinfluenceofpressurecanbediscussedatthemolecularlevel,also.Ifthepressureofthefluidunderstudyislow,thefluidmoleculesfitamongeachothereasilyandasignificantamountoffreespaceisstillavailable.Whenthefluidiscompressed,thefreespacedecreasesquicklyatlowerpressures.Whenthepressureofthesystemishigh,thefreespaceisalmostnegligible.Atthispointafurtherdecreaseinvolumeisconnectedwithinteractionsbetweenfluidmoleculesandtheirneighbouringmolecules.24.IfahydraulicsystemspressureismorethanWorldAcademyofScience,EngineeringandTechnology49200961150bar,theeffectoffreeairisonlyminor9.Fluidtemperatureaffectsthedensityoftheaircontent,thesizeofairbubblesinthefluidandthereforetheequivalentcompressibilityofthefluid.Anincrementoftemperaturealsocauseschangesinthemolecularlevelofthefluid.Morevigorouscollisionsbetweenmoleculesareobserved,whichmayeventuallycausechangesinmolecularstructures,andadecreaseintheireffectivevolumeisprobable.24.Therebytemperaturehasanimportantinfluenceonthebulkmodulusandsonicwavevelocity,especiallyindynamicsituations.Theinfluenceoftemperaturehasbeenstudied,e.g.by23.Theirstudiesincludedatemperaturerangebetween-30°Cand130°C,andtheeffectoftemperatureonsonicwavevelocityseemedtobesignificant23.However,theeffectoffluidtemperaturecanbeignoredifthefluidtemperatureisapproximatelyconstant12,andinmanystudiesthishasbeendone.Inaddition,thebulkmodulusoflubricatingoilsatlowpressurescanbealmostindependentofthetemperature25.Thedensityandbulkmodulusofsolidparts(e.g.pipes)willnotvaryasmuchasthedensityofafluidwhentemperatureandpressurevary10.Thus,theeffectofpiperigidityonthebulkmoduluscanbeignoredifrigidpipesareassumedinahydraulicsystem12.Themoisturecontentofthefluidmayalsoplayaroleifpressurewavevelocitiesaredetermined;itslightlyreducesthevalueofthepressurewavevelocity23.Theviscosityofthefluidalsoaffectsthepressurewavevelocity26,butofcoursetheviscosityofafluiddependsonitsmolecularstructureinthefirstplace,hencetheeffectofviscosityonthepressurewavevelocityvarieswithdifferentfluids.III.TESTEQUIPMENTThetestequipmentandtheprincipleofmeasurementaredepictedinFigs.2and3,respectively.Themeasurementswerecarriedoutbyidentifyingapressurepulseattwopoints,P1andP2,usingpiezosensors.ThedistancebetweenpointsP1andP2(variableLinFig.3)isknownandtwodifferentdistanceswereusedinthetests.Theshorterdistancewas2.75mandthelongerwas4.26m.DistancesL1andL2werealways1.03mand0.11m,respectively.Apressurewavewasexcitedbymeansofapistoninsideapipe.Thisexcitationsystemenablesexcitationofapurepressurewave,becauseunnecessaryelbowsandinterfacesareavoided,sothatreflectionsandtransmissionsofthewaveareminimized.Thepistonwasmovedlightlybutrapidlywithahammer.Asphericalplugvalveandanadjustablevalvewereinstalledinthetestequipmentsothatflowandpressurecouldbecontrolledduringthemeasurements.Thispropertywasusedinthemeasurementssothattwomeasurementserieswerecarriedout.Thefirstonewasdoneunderconstantpressurewithoutflowwiththebothvalvesclosed.Thesecondonewasdonewithflow,sothatflow(andpressure)wascontrolledwiththeadjustablevalve.Theeffectofflowonwavevelocityisinsignificant,asseenlaterinthetext.Themeasurementswerecarriedoutovertwodayssothattemperaturecouldbeassumedtobeconstant.Thetestequipmentdidnotincludeatemperaturesensor,butthetestequipmentwasinsidealaboratorysothatthefluidtemperaturecouldbeassumedtobethesameasthesurroundingtemperature.Thelowestpressureusedwas0.2barandthehighestwas6.1bar,and545measurementswereexecutedbetweentheselimits.ExamplesofthemeasurementresultsaredepictedinFigs.4and5.ThemeasurementsystemincludedoneKyowaPG-20KUpressuresensor(forreferencepressure),twoKuliteHKM-375M-7barVGpressuresensors(forrecognizingapressurewaveattwopoints),aKyowaStrainAmplifierDPM-6H(fortheKyowapressuresensor),aThandar30V-2Aprecisionpowersupply(fortheKulitepressuresensors),aNationalInstrumentsUSB-621116-input(16bit250kS/s)DAQcard,aHPCompaqnx9010laptopcomputerwithMicrosoftWindowsXP,DasyLabv.8.00.004measurementsoftwareandMeasurement&AutomationExplorerv.4.1.0.3001.Themeasurementfrequencywas25kHz(0.04ms)andtheblocksizewas1024bit.Fig.2TestequipmentFig.3PrincipleofthemeasurementsFig.4Responseofthepressurewaveatdetectionpointone(upper,dottedline)andtwo(lower,dashedline).NotethepressuredifferencebetweenthedetectionpointsbecauseofflowWorldAcademyofScience,EngineeringandTechnology492009612Fig.5Samecaseasabove.Thetimedifferencebetweenthedetectionpointscanbereadfromthesurveybox.NotethatthelinesaremodifiedforpublishingbydecreasingtheirresolutionsnotablyfromtheoriginalThevolumeflowofthetestequipmentQcanbeestimatedwiththeHagen-Poiseulleequation(3)27Q=)(128214ppld(3)wheredispipediameter,isdynamicviscosity,lispipelength,p1ispressureatpoint1andp2ispressureatpoint2.Duringthemeasurementspressurewillvaryfromzeroto0.5bar(pipelength2.75m)ortoalmostonebar(pipelength4.26m).Thismeansthattheabsolutemaximumflow,whichisevenoverestimatedhereonpurpose,isconstantlylessthan1.2l/min(0.4m/s)atatemperatureof18Canditseffectontheresultsisimpossibletonoticeinthisarrangement.FluidviscositywasmeasuredwithaBrookfieldDV-II+rotationviscometeranddensitybyusingthespecificweightmethod(weighinganaccuratevolumeofthefluidatthedesiredtemperature).Fluiddensitywas874kg/m3atatemperatureof18Cand864kg/m3atatemperatureof40C.Thedynamicfluidviscositiesatthecorrespondingtemperatureswere121cPand42cP.Thefluidwasacommercialmineraloil-basedhydraulicoil.IV.RESULTSOFMEASUREMENTSAltogether545measurementswereanalyzed.Theaveragepressureofthemeasurementswas2.9barandthemeasuredaveragepressurewavevelocity(soundvelocity),1377m/s.TheresultsofallthemeasurementsarepresentedinFig.6,whichindicatesthemagnitudeofthewavevelocityinthepressurerangebetween0.2barand6bar.InFig.6themeasuredresultsoftheflowsituationandnon-flowsituationareseparated,butascalculatedearlier,thismeasurementarrangementisnotaccurateenoughtorecognizetheeffectofflow.Thus,alltheresultsarehandledtogetherfromhereon.100011001200130014001500160017001800190020000123456PressurebarVelocitym/sFig.6Allthemeasuredresults,545measurements.weremeasuredwithoutflowandweremeasuredwithflowAlltheresultsarepresentedtogetherinTableIsothatthemeasuredpressureisroundedtoanaccuracyof0.1barandtheaveragewavevelocityofallthemeasurementsintheroundedpressureareaiscalculated.Notethatthedeclaredvalueofpressureisalwaysmeasuredbyareferencepressuresensor(seePrefinFig.3).Thus,inTableIpressureisinthefirstcolumn(p),thenumberofmeasurementsinthepressurerange-0.05pi+0.14barisincolumn2(n)andtheaveragewavevelocityofmeasurementsatthedeclaredpressureareincolumn3(a).TheresultsofTableIareillustratedinFig.7.TABLEIPRESSUREWAVEVELOCITIESATDIFFERENTPRESSURES.P=PRESSUREOFTHESYSTEMBAR,N=NUMBEROFMEASUREMENTSANDA=THEDETERMINEDPRESSUREWAVEVELOCITYM/Spnapnapna0.2213132.3913834.4213750.3413662.4313314.52313770.41512952.52013834.6613870.51413262.6414114.71713880.6913682.71313594.8713650.7913602.81413904.9713880.81213482.9314055.01713830.9313903.01713845.1513891.02013573.1613715.2513931.1313603.21013935.3413971.2914003.31313735.4313891.31913793.4514235.51013931.4313903.51913935.6114471.51713603.6313905.70-1.6514073.71613965.8113651.71513713.81013845.9213741.8913913.9313906.0213741.9513504.02013916.1413742.02013774.1513842.1514034.2171387averagesumaverage2.21313824.3813972.95451377WorldAcademyofScience,EngineeringandTechnology492009613

    注意事项

    本文(外文翻译--在液压系统中测量压力波传播速度 英文版【优秀】.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!