欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--对由微注塑模型的聚合物微结构复制的实施和分析 英文版.pdf

    • 资源ID:97827       资源大小:904.80KB        全文页数:8页
    • 资源格式: PDF        下载积分:10积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--对由微注塑模型的聚合物微结构复制的实施和分析 英文版.pdf

    INSTITUTEOFPHYSICSPUBLISHINGJOURNALOFMICROMECHANICSANDMICROENGINEERINGJ.Micromech.Microeng.14(2004)415422PII:S0960-1317(04)69783-XImplementationandanalysisofpolymericmicrostructurereplicationbymicroinjectionmoldingYu-ChuanSu1,2,JatanShah3andLiweiLin1,21BerkeleySensor&ActuatorCenter,UniversityofCalifornia,Berkeley,CA94720,USA2DepartmentofMechanicalEngineering,UniversityofCalifornia,Berkeley,CA94720,USA3DepartmentofMechanicalEngineering,UniversityofMichigan,AnnArbor,MI48105,USAE-mail:yuchsume.berkeley.eduReceived30September2003Published17December2003Onlineatstacks.iop.org/JMM/14/415(DOI:10.1088/0960-1317/14/3/015)AbstractThispaperpresentstheadaptationofaconventionalinjectionmoldingprocesstothemassreplicationofpolymericmicrostructureswithappropriatemolddesignandprocesscontrol.Usingwet-etchedsiliconwaferswithmicrostructuresonthesurfacesasmoldinserts,wehavesuccessfullypredicted,improvedandoptimizedthereplicationresults.Theflowbehaviorsofpolymermeltsinmicromold-cavitiesarecharacterizedbybothsimulationandexperiments.Amongvariousprocessparameters,temperatureisidentifiedasthekeyfactorthatdecisivelydeterminesthequalityofinjection-moldedmicrostructures.Basedonthecollectedexperimentalandsimulationresults,processoptimizationisperformedtoimprovereplicationqualityandtoestablishguidelinesforpotentialapplications.Becauseofitshighspeedandlowcost,theadaptationoftheinjectionmoldingprocesstomicrofabricationwillleadtoapromisingtechnologyforMEMSapplications.1.IntroductionBecauseoftheiruniqueproperties,polymershavebeenincreasinglyusedinawiderangeofapplicationsincludingbothmacro-andmicro-devices.InordertoexpandthefieldofMEMStopolymer-baseddevices,itisimportanttointroduceeffectivetechniquesforthefabricationofpolymericmicrostructuresatalowcostandwithhighprecision.Inrecentyears,anumberoftechnologiesforpolymericmicrostructurereplicationhavebeenproposed,includingtheLIGAprocess1,2thatuseseitherhotembossing3orinjectionmolding4toduplicatepolymericmicrostructures.Usingmoldinsertsfabricatedbyx-raylithography,theLIGAprocessprovidesthepossibilitytomanufacturemicrostructureswitharbitrarylateralgeometryandhighdepthforhighaspectratiodevicesfromavarietyofmaterialssuchasmetals,polymersandceramicsbyvariousmoldingprocesses.Amongdifferentmoldingtechniques,injectionmoldingisthemostprominentonewithadvantagesoflowcostandhighprecisionformassproduction.Successfulresultsforthereplicationofpolymericmicrostructureshavebeenachievedbyusingspecialinjectionmoldingprocesses512andconventionalCD-injectionmoldingtechniques13,14.However,theflowbehaviorsofpolymermeltsinmicromold-cavitiesarenotfullyunderstood.Itisbelievedthatduetothelargesurface-to-volumeratio,surfaceeffectswilldominatetheflowbehavioratthemicroscale15.Thispaperaimstoinvestigatetheflowbehaviorofpolymermeltinthemicromold-cavityanddeterminethenecessarystrategiestoadaptthetraditionalinjectionmoldingprocessforthereplicationofpolymericmicrostructures.First,thedirectapplicationoftheconventionalinjectionmoldingprocessinthereplicationofpolymericmicrostructuresisanalyzedusingasimulationsoftwareC-MOLD16.Differentcombinationsofprocessparametersarethensimulatedtoinvestigatetheflowbehaviorofpolymermelt,therelationshipbetweenprocessparametersandthequalityofmoldedmicrostructures.Usingtheseresults,themostsignificantparameterscanbeidentifiedandpossibleprocessingstrategiescanbeproposedandsimulatedtotestthefeasibility.Finally,0960-1317/04/030415+08$30.00©2004IOPPublishingLtdPrintedintheUK415Y-CSuetal2bxyzyzVelocityprofilePolymermeltPressureandmaterialsupplyFigure1.Schematicofpolymermeltflowinginathincavity.thesestrategiesareappliedinmoldtrialstoevaluatetheirvalidity.2.TheoreticalmodelsBecausemostinjectionmoldedpolymericpartshavecomplicatedthree-dimensional(3D)configurationsandtherheologicalresponseofpolymermeltisgenerallynon-Newtonianandnon-isothermal,itisextremelydifficulttoanalyzethefillingprocesswithoutsimplifications.ThegeneralizedHele-Shaw(GHS)flowmodelintroducedbyHieberandShen17isthemostcommonapproximationthatprovidessimplifiedgoverningequationsfornon-isothermal,non-Newtonianandinelasticflowsinathincavity,asshowninfigure1.TheassumptionsoftheGHSflowmodelare(1)Thethicknessofthecavityismuchsmallerthantheotherdimensions.(2)Thevelocitycomponentinthedirectionofthicknessisneglected,andpressureisafunctionofxandyonly.(3)TheflowregionsareconsideredtobefullydevelopedHele-Shawflowsinwhichinertiaandgravitationalforcesaremuchsmallerthanviscousforces.(4)Theflowkinematicsisshear-dominatedandtheshearviscosityistakentobebothtemperatureandshearratedependent.ThedetailedderivationshavebeendevelopedbyHieberandShen,andtheseassumptionsapplywellforthemicroinjectionmoldingprocess.Inviewoftheseassumptionsandneglectingcompressibilityduringthefillingstages,themomentumequationintheCartesiancoordinatesystemreducesto17zbracketleftbiggvxzbracketrightbigg=Pxzbracketleftbiggvyzbracketrightbigg=Py(1)wherevxandvyarevelocitycomponentsinthexandydirections,respectively;P(x,y)isthepressure,(prime,T)istheshearviscosity,primeistheshearrateandTistemperature.Underthepresentassumptions,primeisgivenbyprime=braceleftBiggbracketleftbiggvxzbracketrightbigg2+bracketleftbiggvyzbracketrightbigg2bracerightBigg1/2.(2)Applyingthelubricationapproximation,thethickness-averagedcontinuityequationresultsin(b¯vx)x+(b¯vy)y=0(3)where¯vxand¯vyareaveragedvelocitiesoverz,andbishalfofthethickness.Afterseveralderivativesteps,thegoverningequationfortheflowofthepolymermeltcanbereducedtothecelebratedReynoldsequation:xbracketleftbiggSPxbracketrightbigg+ybracketleftbiggSPybracketrightbigg=0(4)whereSistheflowconductancewhichisdefinedasS=integraldisplayb0z2dz.(5)Thevelocitiesandshearratecanbeobtainedasvx=Lambda1xintegraldisplaybzz1dz1vy=Lambda1yintegraldisplaybzz1dz1prime=zLambda1(6)whereLambda1x=Px,Lambda1y=PyandLambda1=bracketleftbigLambda12x+Lambda12ybracketrightbig1/2.Becauseofthetemperaturedifferencebetweenmoldandpolymermeltandtheviscousheatinginsidetheflow,thefillingprocessshouldbetreatedasanon-isothermalcase.Heatconductioninthedirectionofflowisneglectedbasedontheassumptionthatthethickness2bismuchsmallerthantheothertwodimensions.TheenergyequationinthemeltregionbecomescpbracketleftbiggTt+vxTx+vyTybracketrightbigg=k2Tz2+prime2(7)wheretheprime2istheviscousheatingterm,and,cpandkaredensity,specificheatandthermalconductivity,respectively.Forsimplicity,itisassumedthatthevelocityandtemperaturearesymmetricinthezdirection,thevelocitiesofpolymermeltonthemoldsurfacesarezeroandthetemperatureofmoldremainsatTwduringfilling.Theboundaryconditionsaregivenbyvx=vy=0atz=bvxz=vyz=0atz=0T=Twatz=±bTz=0atz=0.(8)Ascanbeseen,theequationsofthismodelarenonlinearandcoupled.Itisdifficulttosolvetheseequationsanalytically.Inthispaper,simulationsoftwareC-MOLDthatemploysnumericalsolversbasedonahybridfiniteelement/finitedifferencemethodisusedtosolvethepressure,velocityandtemperaturefieldsoftheGHSmodel.Becauseoftheseapproximations,aGHSmodelcannotpredicttheexactflowfieldneartheadvancingflowfrontorattheedgesofthemold.Thismightcauseerrorsinpredictingtheflowbehaviornearmicroscalemoldcavities.3.DesignandfabricationofmoldingapparatusAnaluminummoldismanufacturedforthereplicationprocess.Theschematicdiagramandaphotographofthealuminummold,whichconsistsofcavityandcorehalves,areshowninfigure2.Thecavityhalfincorporatesthecavityinwhichamoldinsertiskept.A4-inchsilicon416ImplementationandanalysisofpolymericmicrostructurereplicationbymicroinjectionmoldingMountingplateStripperplateMoldinsert(Siliconwafer)MountingplateCorehousingplateSprueCavityhousingplateInsulationlayerHeaterBaseplateFigure2.Injectionmoldset-up.Figure3.Microstructuresonasiliconmoldinsert.waferwithbulkmicromachinedmicrostructuresisusedasthemoldinsert.Figure3showsthesiliconmicromold-insertthatisetchedtohaveacavitydepthof110µm.Thesquarecavitieshaveopeningsof320µm,160µm,80µmand40µmandareetchedbymeansofanisotropicsiliconetchinginTMAH(tetramethyl-ammoniumhydroxide).Aheaterisinstalledintheinjectionmoldtocontrolthetemperatureduringthemoldingprocess.Tohavebetterthermalconductivityandshortercoolingtime,weemployedanaluminummoldthatisalsoeasiertomanufactureandmodify.Inaddition,withappropriatethermalinsulationandacoolingsystem,theproblemofdimensionalvariationcausedbythermalexpansioncanbecontrolledandanaluminummoldcanbeusedasamoreeconomicaltoolforthereplicationprocess.Themoldedcomponentcanberemovedfromthemoldmanuallyorbyusingtheejectionsystem.Unliketheprocessesdescribedinthepreviousliterature,asiliconwaferthatservesasthemoldinsertisplacedinthemoldcavity.Usingsiliconwaferasmoldinserthastheadvantageofshortturnaroundtime.Inaddition,thewearofasiliconmoldinsertismuchsmallerascomparedtoatraditionalnickeltool18.However,asiliconmoldinsertismorebrittlethananickelone.Toavoidthebreakageofthewaferduringthemoldingprocess,theedgeofsiliconwafershouldmatchthecavityboundary.Agapbetweenthemoldinsertandcavitycanallowpolymermelttosolidifywithin,whichwouldeventuallyliftthewaferFigure4.ArburgAllrounder221M350-75injectionmoldingmachine.fromthecavityduringmoldopeningandresultinthebreakageofthewafer.4.ExperimentsAnArburgAllrounder221M350-75conventionalinjectionmoldingmachine,asshowninfigure4,withasinglecavity,coldrunnermoldisemployed.ThematerialusedformoldtrialsisBayerMakrolon2205polycarbonate(PC)thermoplasticresin.Becauseofitsexcellentoptical,chemicalandmechanicalproperties,PCcanbeusedinapplicationssuchasmedicalinstruments,biochemicalsensorsanddatastoragesystems.Thepolymerisinjectedintothemoldcavityatapressurerangingfrom40to50MPa.Themelttemperatureinthefeedingzoneismaintainedatabout300C.Themoldtemperatureiscontrolledbyaheaterandmaintainedatatemperaturelowerthan200C.Thecycletimeofthemoldingprocessis65s,andpolymermeltandmoldareallowedtocooldownfor30safterthefillingstage.Figure5showsthetypicalpressureversustimeandcorrespondingflowrateversustimerelationshipofthemoldingprocess.Forthemicro-moldingprocess,injectionpressure,moldtemperatureand417Y-CSuetalHolding0t1t2t30t1t2t3InjectionPackingHoldingInjectionPackingTimeTimePressureFlowrateFigure5.Typicalpressureversustimeandcorrespondingflowrateversustimerelationshipsduringtheinjectionmoldingprocess.Figure6.SEMmicrographofmoldingresults(injectionpressure45MPa,moldtemperature25C).injectionvelocityarerecognizedasthedrivingparameters.Thedepth-to-openingratiosofmoldedmicrostructuresareusedtomeasurethequalityofmoldingresults.Ahigherdepth-to-openingratiomeansbetterfillingstatusandmoldingquality.Thepresenceofvoidsplaysamajorroleinthemoldingprocess.Preheatingofthepolymerpriortothemoldingprocessreducesthechancesofentrapmentofvoids.Conventionalventingmethodsaredifficulttouseformicroinjectionmoldingduetothehighpossibilityofundesiredstructuralchangesinthemoldedcomponent.Hence,anevacuatedmoldisrecommendedtoobtainagoodreplicationprocess.Inthefirstmoldtrial,ordinaryinjectionmoldingparameterswereusedandnoadditionalcontrolunitwasactivated.Themoldingresultisshowninfigure6.Ascanbeseen,themoldingresultshaveasmalldepth-to-openingratiowhichmeanspolymermeltcannotfillthemicromold-cavity.Inthissituation,polymericmicrostructurescannotbesuccessfullyreplicated.Beforedoingmoremoldtrialstoimprovethemoldingresults,asimulationtoolwasusedtounderstandtheflowbehaviorofpolymermeltinthemicromold-cavityforfeasiblemodificationstoimprovethemoldingresults.5.SimulationItiswellknownthatcomputer-aidedengineering(CAE)canimprovethetrial-and-errortechniques,andcomputermodelscanbereliedupontopredictflowbehaviorandmoldresults.Ideally,CAEanalysisprovidesinsightthatisusefulindesigningparts,moldsandmoldingprocesses.ByusingCAEanalysistoiterateandevaluatealternativedesignsandmaterials,engineeringknow-howintheformofdesignguidelinescanbeestablishedrelativelyfastandcost-effectively.TheCAEsoftwareC-MOLDdevelopedbyACTechnologyisemployedasthenumericalcomputationtool.ThemoldfillingprocessismodeledbytheGHSmodeldescribedintheprevioussection.Thenumericalsolutionsarebasedonahybridfiniteelement/finitedifferencemethodtosolveforthepressure,flowandtemperaturefieldsandacontrolvolumemethodtotrackmovingmeltfronts.Afiniteelementmeshisusedtoapproximatethecircular-shapebaseplatewithconvexmicrostructuresononesurface,asshowninfigure7.Thisfiniteelementmodeliscomposedof6008nodes,2672two-dimensional(2D)triangularelementsand4607one-dimensional(1D)partrunnerelements.The2Dtriangularelements,whichdisregardtheshearandcoolingfromsidewalls,areusedtomodelthesubstrateplate.The1Dpartrunnerelements,whichconsidertheshearandcoolingfromallthecontactsurfaces,areusedtomodelthemicrostructuresonthesurface.Thefollowingconditionsareconsideredinthisworktocontrolandinvestigatetheinjectionmoldingprocess:Fillingtime/injectionpressure.Inordertogenerateuniformmolecularorientationthroughoutthepart,itisrecommendedtomaintainaconstantvelocityatthemeltfront.However,onlyadvancedinjectionmoldingmachineshavetheabilitytoexactlyachievethisrequiredvelocityprofile.InC-MOLD,eitherfillingtimeorinjectionpressurecanbeusedtocontroltheprocesssequence.Moldtemperature.Itisbelievedthatsurfaceeffectswilldominatetheflowbehavioratthemicroscale,andmelttemperaturesarethekeythatdeterminesthefluidpropertysuchasviscosity,specificheatandthermalconductivity.However,hightemperaturemightcausethedegradationofpolycarbonate,soapre-definedmaximalallowablemelttemperatureisusedinthesimulationprocess19.Thicknessofthebaseplate.Thebaseplateisemployedtosupportmicrostructuresandthethicknessofthebaseplatewillaffectthebalanceofpolymermeltandthequalityofmoldedresults.Becausethethicknessofthebaseplateismuchlargerthantheindividualopeningof418

    注意事项

    本文(外文翻译--对由微注塑模型的聚合物微结构复制的实施和分析 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!