欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--注塑模具优化设计为减小温度偏差 英文版【优秀】.pdf

    • 资源ID:97865       资源大小:339.32KB        全文页数:5页
    • 资源格式: PDF        下载积分:10积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--注塑模具优化设计为减小温度偏差 英文版【优秀】.pdf

    InternationalJournalofAutomotiveTechnology,Vol.13,No.2,pp.273277(2012)DOI10.1007/s1223901200245Copyright©2012KSAE/06311pISSN12299138/eISSN1976-3832273DESIGNOPTIMIZATIONOFANINJECTIONMOLDFORMINIMIZINGTEMPERATUREDEVIATIONJ.-H.CHOI1),S.-H.CHOI1),D.PARK2),C.-H.PARK2),B.-O.RHEE1)*andD.-H.CHOI2)1)GraduateSchoolofMechanicalEngineering,AjouUniversity,Gyeonggi443-740,Korea2)GraduateSchoolofMechanicalEngineering,HanynagUniversity,Seoul133-791,Korea(Received24January2011;Revised15June2011;Accepted17June2011)ABSTRACTThequalityofaninjectionmoldedpartislargelyaffectedbythemoldcooling.Consequently,thismakesitnecessarytooptimizethemoldcoolingcircuitwhendesigningthepartbutpriortodesigningthemold.Variousapproachesofoptimizingthemoldcoolingcircuithavebeenproposedpreviously.Inthiswork,optimizationofthemoldcoolingcircuitwasautomatedbyacommercialprocessintegrationanddesignoptimizationtoolcalledProcessIntegration,AutomationandOptimization(PIAnO),whichisoftenusedforlargeautomotivepartssuchasbumpersandinstrumentpanels.Thecoolingchannelsandbaffletubeswerelocatedontheoffsetprofileequidistantfromthepartsurface.Thelocationsofthecoolingchannelsandthebaffletubeswereautomaticallygeneratedandinputintothemoldcoolingcomputer-aidedengineeringprogram,AutodeskMoldflowInsight2010.Theobjectivefunctionwasthedeviationofthemoldsurfacetemperaturefromagivendesigntemperature.Designvariablesintheoptimizationwerethedepths,distancesanddiametersofthecoolingchannelsandthebaffletubes.Foramorepracticalanalysis,thepressuredropandtemperaturedropwereconsideredthelimitedvalues.Optimizationwasperformedusingtheprogressivequadraticresponsesurfacemethod.Theoptimizationresultedinamoreuniformtemperaturedistributionwhencomparedtotheinitialdesign,andutilizingtheproposedoptimizationmethod,asatisfactorysolutioncouldbemadeatalowercost.KEYWORDS:Injectionmolding,Coolingchannel,Coolinganalysis,PQRSM,Designoptimization1.INTRODUCTIONThecoolingstageisthelongeststageduringthecycletimeoftheinjectionmoldingprocess.Therefore,themosteffectivemethodtoreducethecycletimeistoreducethecoolingtime.Thecoolingtimeisfundamentallydeterminedbythepartthicknessandmoldtemperature,whichcreatesacoolingtimelimitation.Ifthemoldtemperatureandpartthicknessareuniformoverawholepart,thecoolingtimeisnotaconcern;however,non-uniformpartthicknessandmoldtemperaturedistributionlengthentheoverallcoolingtime.Alongercoolingtimemeanspoortemperatureuniformity,whichcancausetheparttowarp.Thisisespeciallytrueforlargeproducts,suchasautomotivebumpersandinstrumentpanels.Itisforthesetypesofpartsthattemperatureuniformitybecomesthemostimportantfactorinmolddesign.Wedevelopedanautomatedoptimizationofthecoolingcircuitforanearlypartdesigninordertocheckthedesignvalidity.Usuallytheearlypartdesignischeckedbythefiling/packingandwarpageanalyseswithoutacoolinganalysis.Thisisbecausetheassumptionisthatthemoldtemperatureisuniform,whichisnotactuallytrue.Providingarapidlyoptimizedcoolingcircuitforthedesignedpartwouldhelppartdesignerscorrecttheirdesign(KoresawaandSuzuki,1999).Theoptimizationwasdesignedtominimizetheparttemperaturedeviationusingdesignvariablessuchasthediametersanddistancesofthecoolingchannelsandbaffletubesandthedepthsofthepartfromthemoldsurfaceofthecoolingchannelsandbaffletubes.Acommercialcomputer-aidedengineering(CAE)tool,AutodeskMoldflowInsight,wasusedforthecoolinganalysis.Wesuccessfullyobtainedanoptimizedcoolingcircuitinatimemuchshorterthancanbeachievedinamanualdesign.Inordertodeveloptheautomatedoptimizationofthecoolingcircuitforthepracticalmolddesign,practicaldesignparameterssuchasthepressuredroplimitandthecoolanttemperaturerisewereconsideredintheoptimization.Theperformanceoftheoptimizationtechniquecanbeaffectedbynumericalnoiseintheresponses.Tofindanoptimumsolutioneffectivelywhennumericalnoiseexists,weperformedanoptimizationbyapplyingaregression-basedsequentialapproximateoptimizerknownastheProgressiveQuadraticResponseSurfaceMethod(PQRSM)(Hongetal.,2000),whichwaspartofacommercialprocessintegrationanddesignoptimization(PIDO)toolknownastheProcessIntegration,AutomationandOptimization(PIAnO)(FRAMAX,2009).*Correspondingauthor.e-mail:rhexajou.ac.kr274J.-H.CHOIetal.2.MODELANDCHANNELCONFIGURATION2.1.ModelConfigurationThemodelusedfortheoptimizationandCAEanalysiswasanautomotivefrontbumper(FB).Thesizeofthepartwas1,800×600mm,theelementtypewastriangularandthenumberofelementsinthemodelwasapproximately26,000,withanaverageaspectratioof1.5.ThemodelisshowninFigure1.2.2.CoolingChannelConfigurationThecoolingcircuitfortheautomotivebumpermoldistypicallydesignedtohaveahorizontalplaneoflinecoolingchannelsandtoinstallbaffletubesfromthelinecoolingchannels.However,inthisdesign,unnecessarilylongbaffletubesattachedatalinecoolingchannelmaycauseahighpressuredropinthecoolingchannel.Thelinecoolingchannelsmaynotcontributetomoldcoolingduetotheirlargedistancefromthepartsurface.Inordertoimprovethedesign,thelinecoolingchannelswerelocatedalongtheoffsetprofileofthepartsurfaceasshowninFigure2.Theendpointsofthebaffletubeswerealsolocatedontheoffsetprofilealongalinecoolingchannel.Eitherthelinecoolingchannelsorbaffletubeswerelocatedontheoffsetprofileswithequalarcdistancesbetweenthem.3.FORMULATION3.1.DesignConstraintsThelimitationofthepressuredropandthetemperaturerisebetweentheinletandoutletofcoolingchannelshouldalsobeconsideredinthedesignofthemoldcoolingcircuit.Ahighpressuredropusuallyoccursinaneedlesslylongcoolingcircuit.Inalongcoolingcircuit,theflowrateofcoolantislow,whichresultsinahighmoldtemperatureandahightemperatureriseattheoutlet.Thedesigndefectcouldeventuallybefoundinthecoolinganalysis;however,theoptimizationisalreadytimeconsuming,soitisbettertoinsteadapplythelimitsasconstraintsintheoptimization.Inthisworkweassumedthat4linecoolingchannelswereconnectedinseriesasacluster,asshowninFigure3.Clustersareconnectedinparallelbyamanifold.Usually,themaximumpressuredropinaclusterislimitedto200kPa,andthemaximumtemperatureriseattheoutletis5oC(Mengesetal.,2001).Inthecoolinganalysis,eachlinecoolingchannelisregardedasaseparateindependentcircuitforconvenience.Becausetherewere4linecoolingchannelsinacircuit,thelimitsonthepressuredropandthetemperatureriseineachlinecoolingchannelwere50kPaand1.25oC,respectively.Wealsohaveanadditionalconstraintduetothefactthatthediameterofthebaffletubemustbegreaterthanorequaltothediameterofthecoolingchannelbecausethebaffletubehaslowerheatremovalefficiencythanthecoolingchannel.ThesethreedesignconstraintscanbeexpressedasEquations(1),(2)and(3),(13)whereG1istheconstraintonpressuredrop,G2istheconstraintontemperaturerise,andG3representsthesubtractionofthediameterofthebaffletubefromthediameterofthecoolingchannel.3.2.DesignVariablesInthiswork,thediameters,distancesanddepthsofthelinecoolingchannelsandbaffletubeswerechosenasdesignvariablesforoptimization.Thetotalnumberofdesignvariableswas6asshowninTable1.Typically,thediametersofthecoolingchannelsandbaffletubesaredeterminedbythemolddesigneraccordingtotheirruleof0PaG150000pa0CoG21.2CoG30mmFigure1.Finiteelementmodeloftheproductusedfortheoptimization.Figure2.Configurationofcoolingchannelslocatedalongtheoffsetprofiles.Figure3.Clustersconsistingof4coolingchannelswithbaffletubes.DESIGNOPTIMIZATIONOFANINJECTIONMOLDFORMINIMIZINGTEMPERATUREDEVIATION275thumb(Rheeetal.,2010).However,ithasbeenexaminedingreatdetailamongthemolddesigners.Table1showsthedesignvariableswiththeirrangesandinitialvalues.Theminimumvaluesforthecoolingchanneldistance,baffledistanceandbaffledepthweredeterminedbytheconstraintsofthemachiningrequirement.Themaximumvaluesofcoolingchanneldistanceandbaffledistanceweredeterminedbytheempiricalmaximumobtainedfromthemolddesigners.ThebaffledistancewasadiscretevariableduetoarestrictionintheautomateduseoftheCAEsoftware.Inthiswork,thebaffledistancesforoptimizationwere60,90and120mm.3.3.ObjectiveFunctionAprincipalpurposeofthemoldcoolingcircuitoptimizationistoachieveuniformtemperaturedistributionoverthepart.Theuniformtemperaturedistributionmeansthatthetemperaturedeviationcausedbythecoolingchannelsisminimized,asshowninFigure4.TheobjectivefunctionintheoptimizationwasthestandarddeviationofparttemperatureasshowninEquation(4).Theparttemperaturewasanarithmeticaverageoftheupperandthelowersurfacesofthemoldhalves.Themoldsurfacetemperaturewascalculatedfromthefiniteelementofthepart.min,(4)whereisthestandarddeviationoftheparttemperature,Eiisthetemperatureofi-thelement,Ewistheaveragetemperatureoftheentiretriangularelements,andNisthenumberofelements.4.OPTIMIZATION4.1.ParametricStudyInordertoexaminetheeffectsofthedesignvariablesontheobjectivefunction,pressuredropandtemperaturerise,parametricstudieswerecarriedout.Aparametricstudywasperformedbychangingavariableinacertainrangewhilekeepingallothervariablesfixed.Figures5-7showtheresultsofparametricstudiesfortheobjectivefunction,pressuredroptemperaturerise,respectively.Ineachfigure,thex-axisindicatesthelevelsofdesignvariables.Everydesignvariablewasdividedinto11levelsfromitslowerboundtoitsupperbound.-5and5meanthelowerandupperbounds,respectively.Whenexaminingthetemperaturedeviation,thediameterofthecoolingchannelsshowslittleinfluencetotheobjectivefunction(seeFigure5.).Thisresultwaspredictablebecausethecoolingchannelaffectstheparttemperaturetoalesserdegreethanthebaffletubesintheautomotivebumpermold.Theautomotivebumpermoldhasadeepcoresothatthemoldcoolingdependsuponthebaffletubesratherthanthecoolingchannels.Anotherreasonofthelackofinfluencecanbethattheflowstateinthecoolingchannelremainsturbulentintherangeoftheparametricstudy.Thecoolingchannelusuallyhasasmallerdiameterthanthebaffletube.Whentheflowinthebaffletubeiskeptintheturbulentstate,theflowinthecoolingchannelwillbeintheturbulentstate.Thediametersofthebaffletubesshowatangibleinfluencewhenitincreasesaboveacertainvalue.Increasingofthediameterchangestheflowinthetubetoalaminarflowstate.Thisisthecauseforthelowerheattransfercoefficientwhencomparedtotheturbulentflowstate.Thisiswhythetemperaturedeviationbecomeslargerwhenthebaffletubediameterincreases.EiEw()2N-i1=N=Figure4.Schemeofthetemperaturefieldbythecoolingchannels.Table1.Lowerandtheupperboundsfordesignvariablesandtheinitialvaluesfortheoptimization(unit:mm).DescriptionLowerInitialUpperX1Channeldiameter103040X2Bafflediameter103040X3Channeldistance6090120X4Baffledistance6060120X5Channeldepth306090X6Bafledepth306090Figure5.Parametricstudyresultoftemperaturedeviation(objectivefunction).276J.-H.CHOIetal.Amongallparameters,thebaffledepthshowsthelargestinfluenceontheobjectivefunction,asshowninFigure5.Asthebaffledepthincreases,theobjectivefunctionincreases.Thismeansthatthedeeperlocationofthebaffletubescausesthetemperaturedeviationtoincrease.Also,itconfirmsthatthecoolingoftheautomotivebumpermolddependsuponthebaffletubes.Thediametersofthecoolingchannelsandthebaffletubeshavethehighestinfluenceonthepressuredropinthecoolingcircuit,whiletheothervariablesshowlittleinfluence(seeFigure6.).Asthediametersincrease,thepressuredropdecreasesafteracertainvalue.Thisisalsoapredictableresultasalargerdiameterdecreasesthepressuredrop.TheinfluencesofthetemperatureriseattheoutletareshowninFigure7.Themostinfluentialparametersarethebafflediameterandthechanneldistance.Theinfluenceofthebafflediametershowsthehighestvaluesintherangefrom-1to3.Inthecaseofthesmallerbafflediameter,thereducedsurfaceareafortheheattransfermaycauseasmallertemperaturerise,whilethelargerbafflediametermaycausethelowerheattransfercoefficientduetothelowerflowrate.Theincreasedchanneldistancemeansthateachcoolingchanneltakesupalargerareaofthepartsurfacewithalargeramountofheatremoval.Thismaygiveaphysicalexplanationtowhytheincreaseofthetemperatureriseincreaseswithchanneldistance.ThefluctuationsshowninFigure7aresupposedtobenumericalnoise.4.2.OptimizationResultsThelargestincreaseinthetemperaturerise(Figure7)isapproximately0.15oC.Thisvalueismuchlessthantheconstraint.Theinfluenceofthevariablesonthetemperatureriseisnottangible.Thebaffledistancewasconsideredthediscretevariableinthiswork;hence,itwasdifficulttoapplyageneraloptimizationmethod.Becausetherewerethreevalues,optimizationswerecarriedout3timeswiththe5designparameters.Thebaffledistancewasfixedineachoptimization.Figures8and9showthetemperaturedeviationsasthechanneldiameter,x1andthechanneldistance,x3changeby0.1%usingtheperturbationmethodaroundtheirinitialdesignvalues.Fromtheseresultswerecognizedthatthevariationsinthetemperaturedeviationsasx1andx3variedincludednumericalnoise.Therefore,wechosePQRSMastheoptimizationmethodthatcouldeffectivelyoptimizetheresponsewithnumericalnoise.ThePQRSMequippedinacommercialFigure6.Parametricstudyresultofthepressuredrop.Figure7.Parametricstudyresultofthetemperaturerise.Figure8.Variationofthetemperaturedeviationw.r.t.x1observedbyusing0.1%perturbationmethod.Figure9.Variationofthetemperaturedeviationw.r.t.x3observedbyusing0.1%perturbationmethod.

    注意事项

    本文(外文翻译--注塑模具优化设计为减小温度偏差 英文版【优秀】.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!