外文资料--Using spectral components for predicting treatment.PDF外文资料--Using spectral components for predicting treatment.PDF

收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

USINGSPECTRALCOMPONENTSFORPREDICTINGTREATMENTEFFECTSONTIMESERIESMICROARRAYGENEEXPRESSIONPROFILESQIANXUBIOENGINEERINGPROGRAMHKUSTCLEARWATERBAY,KOWLOON,HONGKONGEMAILFLEURXQUSTHKHONGXUEDEPTOFBIOCHEMISTRYHKUSTCLEARWATERBAY,KOWLOON,HONGKONGEMAILHXUEUSTHKQIANGYANGDEPTOFCOMPUTERSCIENCEANDENGINEERINGHKUSTCLEARWATERBAY,KOWLOON,HONGKONGEMAILQYANGCSEUSTHKABSTRACTANALYZINGTIMESERIESGENEEXPRESSIONPROFILESISANINCREASINGLYPOPULARMETHODFORUNDERSTANDINGTHEBEHAVIOROFAWIDERANGEOFBIOLOGICALSYSTEMSONECOULDSTUDYTHESTATUSOFADISEASEBYANALYZINGTHEINDUCTIONORREPRESSIONACTIVITYANDEFFECTSFROMANUMBERORASPECIFICGROUPOFGENESINSUCHASCENARIO,ITISOFTENNATURALFORBIOLOGICALRESEARCHERSTOPOSEOUTTHEQUESTIONOFWHETHERONECOULDPREDICTTHETREATMENTEFFECTSBYUSINGSUCHTIMESERIESMICROARRAYGENEEXPRESSIONPROFILESHOWEVER,SUCHPROBLEMISABIGCHALLENGECONSIDERINGTHEIRSPECIFICNATUREUSUALLYSUCHTIMESERIESGENEEXPRESSIONPROFILESARESHORTANDTHESAMPLINGRATESARENOTUNIFORMOUREXPERIMENTSWITHAREALWORLDDATASETSHOWTHATTRADITIONALMACHINELEARNINGMETHODSSUCHASSUPPORTVECTORMACHINEWILLNOTPERFORMWELLINSUCHACASEINTHISPAPER,WEDECOMPOSEATIMESERIESGENEEXPRESSIONPROFILEINTOFREQUENCYCOMPONENTSANDAPPLYMACHINELEARNINGALGORITHMSTOHELPIMPROVETHEPREDICTIONACCURACYEXPERIMENTALRESULTSSHOWTHATOURALGORITHMISBOTHACCURATEANDEFFECTIVEKEYWORDSTIMESERIESGENEEXPRESSION;TREATMENTPREDICTION;SPECTRALCOMPONENTSIINTRODUCTIONGENEEXPRESSIONISTHEPROCESSBYWHICHINHERITABLEINFORMATIONFROMAGENEISMADEINTOAFUNCTIONALGENEPRODUCT,SUCHASPROTEINORRNAWHILEINTHEFIELDOFMOLECULARBIOLOGY,GENEEXPRESSIONPROFILINGISTHEMEASUREMENTOFTHEACTIVITYOFTHOUSANDSOFGENESATONCETHEREFORE,AGLOBALPICTUREOFCELLULARFUNCTIONCANBECREATEDANDANALYZEDVIATHEEXPRESSIONPROFILESFORMICROARRAYTECHNOLOGY,ITMEASURESTHERELATIVEACTIVITYOFPREVIOUSLYIDENTIFIEDTARGETGENESTIMESERIESEXPRESSIONPROFILING,DIFFERENTFROMSTATICEXPRESSIONPROFILING,PROVIDESATEMPORALPROCESSOFTHEEXPRESSIONOFGENES,WHILESTATICEXPRESSIONPROFILINGOFGENESONLYPROVIDESASINGLESNAPSHOTOFTHEGENESRELATEDFORTIMESERIESDATA,ITISINTUITIVETOSEETHATTHESUCCESSIVEPOINTSARENOTINDEPENDENTIDENTICALLYDISTRIBUTED,HENCE,WHENANALYZINGSUCHDATA,UNDERSTANDINGTHECORRELATIONBETWEENTHESUCCESSIVEDATAPOINTSISALSOVERYIMPORTANTONEOFTHEAPPLICATIONSOFANALYZINGTIMESERIESMICROARRAYGENEEXPRESSIONDATAISTOPREDICTTREATMENTEFFECTSFORMANYCHRONICDISEASES,TREATMENTEFFECTSAREOFTENNONNEGLIGIBLEANDTHESIDEEFFECTSCAUSEDBYIMPROPERTREATMENTAREVERYSERIOUSFOREXAMPLE,OURDATASETUSEDFORANALYZINGINTHISPAPERREFLECTSTHETREATMENTEFFECTSOFINTERFERONANDRIBAVIRINTOHCVHEPATITISCVIRUSINFECTEDPATIENTSHCVISONEOFTHECAUSESOFCHRONICHEPATITIS,CIRRHOSIS,ANDHEPATOCELLULARCARCINOMATHECURRENTMETHODOFHCVTREATMENTISACOMBINATIONOFPEGYLATEDINTERFERONALPHAANDTHEANTIVIRALDRUGRIBAVIRINFOR24OR48WEEKSNEVERTHELESS,USINGTHESETWOKINDSOFDRUGSTOGETHERMAYLEADTOSIDEEFFECTSASTHEPATIENTSMAYGETHEADACHESOREVENMYELOIDDISORDERSANDNEUROPSYCHIATRICSYMPTOMSTHEREFORE,ITISNATURALTOASKTHEQUESTIONABOUTWHETHERWECOULDPREDICTTHETREATMENTEFFECTSATANEARLYSTAGE,INSTEADOFAFTER24OR48WEEKSWHENTHEPATIENTSMAYALREADYHAVESHOWNTHESYMPTOMSOFSIDEEFFECTSHOWEVER,CONVENTIONALMETHODSINBIOLOGYCANNOTHANDLESUCHPROBLEMSINASATISFYINGWAYIN1,ITISSUGGESTEDTHATMACHINELEARNINGMETHODSCOULDHELPPREDICTTHETREATMENTEFFECTSOFTIMESERIESMICROARRAYGENEEXPRESSIONPROFILESSUCCESSFULANALYSISANDCOMPREHENSIONOFWHATWASHIDDENBEHINDTHESEGENEEXPRESSIONPROFILESISANIMPORTANTPROBLEMINBIOINFORMATICSANDMANYRESEARCHERSHAVEPROPOSEDVARIOUSALGORITHMSFORANALYZINGGENEEXPRESSIONEARLIERWORKONANALYZINGTIMESERIESGENEEXPRESSIONDATAFREQUENTLYUSEDMETHODSTHATARETHESAMEFORSTATICEXPRESSION2LATER,ALGORITHMSWEREDEVELOPEDFORSPECIFICALLYTARGETINGTIMESERIESDATA3HOWEVER,TIMESERIESDATAHAVEMANYSPECIFICCHALLENGESSINCEIT’SVERYEXPENSIVETOPERFORMTIMESERIESEXPERIMENTS,MANYTIMESERIESAREVERYSHORTITISSHOWNIN4THATMORETHAN80OFALLTIMESERIESDATASETSINSTANFORDMICROARRAYDATABASESMDCONTAINLESSTHAN8TIMEPOINTSTHENUMBEROFGENESTHATHAVEBEENPROFILEDISRATHERLARGE,USUALLYOVERTHOUSANDSTHECONFLICTBETWEENSUCHALARGENUMBEROFGENESANDTHESMALLTIMEPOINTSPOSESANEVENGREATERCHALLENGEFORANALYZINGSUCHTIMESERIESDATAANOTHERCHALLENGEISTHATOURSPECIFICPROBLEMOFPREDICTINGTHETREATMENTEFFECTSBASEDONMICROARRAYTIMESERIESGENEEXPRESSIONPROFILESISACLASSIFICATIONPROBLEM;NEVERTHELESSATPRESENT,ALARGENUMBEROFCURRENTRESEARCHINSTEADFOCUSESONCLUSTERINGMETHODSOFTHETIMESERIESDATA5,6EVENTHOUGHONECOULDTRYTOUSESOMEDENSITYBASEDCLUSTERING9781424447138/10/25002010IEEEMETHODSANDADAPTTHEMTOACLASSIFICATIONFRAMEWORK,MANYOFTHESECLUSTERINGALGORITHMSWILLOVERFITINOURCASE,WHENTHETIMEDATAPOINTSAREEXTREMELYSMALLTHEREFORE,ITISRATHERNECESSARYANDDIFFICULTTODESIGNANALGORITHMTOACCURATELYPREDICTTHETREATMENTEFFECTSOFSHORTTIMESERIESMICROARRAYGENEEXPRESSIONPROFILESTHEREHAVEALSOBEENMANYPREVIOUSRESEARCHONCLASSIFYINGGENEEXPRESSIONS,HOWEVER,MOSTOFTHESEMETHODSFOCUSONSTATICEXPRESSIONSUSINGSUPPORTVECTORMACHINES,FUREYETAL7CLASSIFIEDCANCERTISSUESAMPLESBICCIATOETAL8USEDPRINCIPALCOMPONENTANALYSISFORMULTICLASSCANCERANALYSISASPECIFICCHALLENGEFORTIMESERIESGENEEXPRESSIONCLASSIFICATION,ASPOINTEDOUTBY9,ISTHATTHEDISEASEDEVELOPMENTORTREATMENTRESPONSEISNOTUNIFORMANDISPATIENTSPECIFICTHEOVERALLTRAJECTORYMAYBESIMILARBETWEENPATIENTSBUTDIFFERENTPATIENTSWILLPROGRESSATDIFFERENTSPEEDS,EVENGIVENTHESAMETREATMENTTHEREFORE,ACLASSIFIERSHOULDBEABLETOTAKETHEVARYINGRESPONSERATESANDDEVELOPMENTSPEEDINTOACCOUNTHENCE,TRADITIONALMACHINELEARNINGMETHODS,SUCHASSUPPORTVECTORMACHINES,WILLNOTPERFORMSOWELLFORTHISSPECIFICPROBLEMOUREXPERIMENTALRESULTSINTHELATERSECTIONWILLALSOCONFIRMTHISFINDINGINTHISPAPER,WEPRESENTANALGORITHMFORPREDICTINGTREATMENTEFFECTSBASEDONTIMESERIESMICROARRAYGENEEXPRESSIONDATABYTRANSFORMINGTHEORIGINALGENEEXPRESSIONDATATOITSSPECTRALCOMPONENTCOUNTERPARTLATER,WEEMPLOYTRADITIONALSVMFORFURTHERCLASSIFICATIONWECOMPAREOURALGORITHMWITHDIRECTLYCLASSIFYONTHEORIGINALDATASETINTHETIMEDOMAINVIASVMINAREALWORLDDATASETANDCONFIRMTHATOURALGORITHMISSIMPLEANDEFFECTIVEBYEXPERIMENTSTHERESTOFTHISPAPERISORGANIZEDASFOLLOWSINSECTION2,WEWILLDESCRIBESOMERELATEDWORKSINCLUSTERINGGENEEXPRESSIONDATABOTHINSTATICEXPRESSIONANDTIMESERIESEXPRESSION;CLASSIFICATIONWITHTIMESERIESGENEEXPRESSIONDATA;OTHERDATAMININGMETHODSINANALYZINGTIMESERIESINSECTION3,WEWILLDESCRIBEOURALGORITHMFORPREDICTINGTREATMENTEFFECTSVIASPECTRALCOMPONENTSINSECTION4,WEWILLCONDUCTSOMEEXPERIMENTSANDSHOWTHEEFFECTIVENESSOFOURALGORITHMFINALLY,WEWILLMAKECONCLUSIONSANDDISCUSSSOMEPOSSIBLEDIRECTIONSFORFUTURERESEARCHIIRELATEDWORKACLUSTERINGGENEEXPRESSIONDATAMANYGENERALCLUSTERINGAPPROACHESHAVEALREADYBEENAPPLIEDTOCLUSTERGENEEXPRESSIONDATA10IN11,EISENETALDEVELOPEDACLUSTERINGMETHODBASEDONTHEWIDELYKNOWNHIERARCHICALCLUSTERINGALGORITHMAKMEANSBASEDCLUSTERINGALGORITHMWASDEVELOPEDBYHERWIGETAL12TOCLUSTERCDNAOLIGOFINGERPRINTSTHISALGORITHMDOESNOTREQUIREAPREDEFINEDSPECIFIEDNUMBEROFCLUSTERSTHEHCS13ALGORITHMREPRESENTSTHEDATAASASIMILARITYGRAPHANDTHENRECURSIVELYPATTERNSTHECURRENTSETOFELEMENTSINTOTOSUBSETSBYCONSIDERINGWHETHERTHESUBGRAPHINDUCEDBYCURRENTSETOFELEMENTSSATISFIESTHESTOPPINGCRITERIONHOWEVER,THESEALGORITHMSARELARGELYBASEDONTHEGENERALMETHODOFCLUSTERINGINTHEFIELDOFDATAMINING,WITHOUTTAKINGTHESPECIFICNATUREOFTIMESERIESGENEEXPRESSIONDATAINTOCONSIDERATIONTAKINGTHESEQUENTIALPROPERTYOFTIMESERIESGENEEXPRESSIONDATAINTOCONSIDERATION,MANYCLUSTERINGALGORITHMSSPECIFICALLYDESIGNEDFORTIMESERIESGENEEXPRESSIONDATAHAVEBEENPROPOSEDIN14,ABAYESIANMETHODFORMODELBASEDCLUSTERINGOFGENEEXPRESSIONDYNAMICSWASPROPOSED,WHICHREPRESENTSGENEEXPRESSIONDYNAMICSASAUTOREGRESSIVEEQUATIONSANDSEARCHESTHEMOSTPROBABLESETOFCLUSTERSGIVENTHEAVAILABLEDATAINTHISWAY,THEDYNAMICNATUREOFTIMESERIESGENEEXPRESSIONDATAISTAKENINTOACCOUNTINPRACTICE,EXPERIMENTSSHOWTHATSUCHANALGORITHMWORKSFORLONGTIMESERIESGENEEXPRESSIONDATABUTNOTFORSHORTTIMESERIESGENEEXPRESSIONDATAZIVBARJOSEPH5PROPOSEDACLUSTERINGALGORITHMUSINGSPLINESTOCLUSTERTHECONTINUOUSREPRESENTATIONOFTIMESERIESGENEEXPRESSION,YETITSTILLCANNOTHANDLESHORTTIMESERIESGENEEXPRESSIONDATAVERYWELLIN4,ACLUSTERINGALGORITHM,WHICHUSESASETOFMODELPROFILESTOCLUSTERTHERESULTSOFTHESEEXPERIMENTSSPECIFICALLY,DESIGNEDFORSHORTTIMESERIESGENEEXPRESSIONDATAWASPROPOSEDTHEREAREMANYOTHERCLUSTERINGALGORITHMSDEALINGWITHTIMESERIESGENEEXPRESSIONDATAFOREXAMPLE,AGENECLUSTERINGALGORITHMBASEDONMIXTUREOFHMMWASPROPOSEDIN6GENESAREASSOCIATEDWITHTHEHMMMOSTLIKELYTOGENERATETHETIMECOURSESOFTHECORRESPONDINGEXPRESSIONDATAIN15,AMULTISTEPAPPROACHFORCLUSTERINGTIMESERIESGENEEXPRESSIONDATAWASINTRODUCED,CONSISTINGNONLINEARPCA,PROBABILISTICPRINCIPALSURFACESBASEDONNEGENTROPYIN16,AGENEEXPRESSIONDATAISDECOMPOSEDINTOFREQUENCYCOMPONENTSANDTHECORRELATIONBETWEENTHEDATAFROMAPAIROFGENESISMEASUREDINTHEFREQUENCYDOMAINANEXTENSIVEREVIEWOFCLUSTERINGMETHODSINGENEEXPRESSIONDATAISBEYONDTHESCOPEANDPAGELIMITOFOURPAPERBCLASSIFICATIONWITHGENEEXPRESSIONDATAANOTHERIMPORTANTTOPICRELATEDTOOURPROBLEMISTHECLASSIFICATIONPROBLEMOFGENEEXPRESSIONDATAONEOFTHEMOSTIMPORTANTPROBLEMSLYINGINTHISCATEGORYISTUMORCLASSIFICATIONFOREXAMPLE,SEVERALMULTICATEGORYCLASSIFICATIONALGORITHMSHAVEBEENPROPOSEDINRECENTYEARSUSINGSUPPORTVECTORMACHINES,SHOWINGTHATSOMEMULTICLASSSVMSPERFORMWELLINISOLATEDGENEEXPRESSIONCANCERDIAGNOSTICEXPERIMENTS17MOREOVER,ITCANBEBELIEVEDTHATTHEFINALPERFORMANCEOFTHECLASSIFIERSWILLIMPROVEWHENWECOMBINETHECLASSIFICATIONRESULTSANDDIFFERENTKINDSOFCLASSIFIERS,HENCE,ENSEMBLELEARNINGALGORITHMSMAYBEUSEDINSUCHASCENARIOIN18,TRADITIONALENSEMBLELEARNINGMETHODSSUCHASBAGGINGANDBOOSTINGWEREAPPLIEDTOTUMORCLASSIFICATIONPROBLEMSOTHERAPPLICATIONSINCLUDETHEWORKBYFUREYETAL7TOCLASSIFYCANCERTISSUESAMPLESANDBICCIATOETAL8TOANALYZEMULTICLASSCANCERUSINGPRINCIPALCOMPONENTANALYSISHOWEVER,ASWEHAVEMENTIONEDABOVE,THESEGENEEXPRESSIONCLASSIFICATIONALGORITHMSCANNOTBEDIRECTLYAPPLIEDTOTIMESERIESGENEEXPRESSIONCLASSIFICATIONSINCETHEYDONOTHANDLETHETEMPORALRELATIONSHIPBETWEENDIFFERENTTIMESLICESOFTHEGENEEXPRESSIONDATACTIMESERIESDATACLASSIFICATIONFURTHERMORE,TIMESERIESDATACLASSIFICATIONTASKISALSOHIGHLYRELEVANTTOOURPROBLEMSINCEOURWORKFOCUSESONDEALINGWITHPREDICTINGTREATMENTEFFECTSINTIMESERIESGENEEXPRESSIONPROFILEDATAHOWEVER,THEGENERALTIMESERIESDATACLASSIFICATIONALGORITHMISOFTENONLYAPPLIEDTOLONGTIMESERIESANDWILLNOTPERFORMSOWELLINSHORTTIMESERIESONEOFTHEMOSTIMPORTANTWORKINTIMESERIESDATACLASSIFICATIONISDYNAMICTIME
编号:201311201910487497    类型:共享资源    大小:120.93KB    格式:PDF    上传时间:2013-11-20
  
1
关 键 词:
外文资料
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:外文资料--Using spectral components for predicting treatment.PDF
链接地址:http://www.renrendoc.com/p-107497.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5