三相异步电动机的机械特性.ppt_第1页
三相异步电动机的机械特性.ppt_第2页
三相异步电动机的机械特性.ppt_第3页
三相异步电动机的机械特性.ppt_第4页
三相异步电动机的机械特性.ppt_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章 三相异步电动机的机械特性 及各种运行状态 本章教学目的: 1、掌握异步电动机机械特性的三种表达式 2、掌握异步电动机固有机械特性与人为机械 特性及曲线画法 3、掌握异步电动机的各种运转状态计算 4、掌握调速及制动电阻计算 重点和难点: 重点:1、运转状态及其制动电阻计算 2、调速电阻计算 难点:1、运转状态分析及其制动电阻 计算 2、调速电阻推导公式 10-1 异步电动机机械特性 n三相异步电动机的机械特性是指在电动机定 子电压、频率以及绕组参数一定的条件下, 电动机电磁转矩与转速或转差率的关系,即 n=(T)或s=(T)。 n机械特性可用函数表示,也可用曲线表示, 用函数表示时,有三种表达式:物理表达式 、参数表达式和实用表达式。 1.异步电动机机械特性三种表达式 n(1)物理表达式 n电磁转矩为: 分析物理表达式 n异步电动机的转矩系数: n转子电流折算值: n转子功率因数: 物理表达式它反映了不同转速时电磁转矩T与 主磁通m以及转子电流有功分量I2cos2之间 的关系,此表达式一般用来定性分析在不同 运行状态下的转矩大小和性质。 (2)参数表达式 n异步电动机的电磁转矩T与定子每相电压U1平 方成正比,若电源电压波动大,会对转矩造 成很大影响。 机械特性曲线 n在电压、频率及绕组参数一定的条件下,电磁转矩T 与转差率s之间的关系可用曲线表示如图所示。 异步电动机机械特性 最大转矩Tm n最大转矩Tm是T=(s)的极值点,最大转 矩为: n最大转矩对应的临界转差率为: 两式中“+”为电动状态(特性在第象限); “-”为制动状态(特性在第象限)。 最大转矩近似表达式 n通常情况下, 可忽略r1,则有 : n最大转矩与额定转矩的比值称为过载倍数 ,其值大小反映电动机过载能力,用m表 示,即: n一般异步电动机过载倍数m=1.52.2。 起动转矩Tst n起动瞬间n=0或s=1时,电动机相当于堵转, 这一时刻的电磁转矩称为起动转矩或堵转转 矩,用Tst表示,则有: n起动转矩与额定转矩的比值称为起动转矩倍 数或堵转转矩倍数,用kst表示,则有: n一般普通异步电动机起动转矩倍数为0.81.2 。 (3)实用表达式 n实用表达式: n认为 ,一般异步电动机的 ,在任何s值时都有: ,而 , 可以忽略,简化得: 临界转差率 n临界转差率: n当拖动额定负载时,TL=TN临界转差率为: n额定转矩为: n从产品目录查出该异步电动机的数据PN、nN、 m应用实用公式就可方便得出机械特性表达式 。 2.固有机械特性 n异步电动机的固有机 械特性是指U1=U1N , 1=1N,定子三相 绕组按规定方式连接 ,定子和转子电路中 不外接任何元件时测 得的机械特性n =( T)或T=(s)曲线 。 n对于同一台异步电动 机有正转(曲线1) 和反转(曲线2)两 条固有机械特性。 三相异步电动机固有机械特性 说明特性上的各特殊点1 n(1)同步转速点A 同步转速点又称理想空载点,在该点处 :s=1,n=n1,T=0,E2s=0,I2=0,I1=I0, 电动机处于理想空载状态。 n(2)额定运行点B 在该点处:n=nN,T=TN,I1=I1N,I2=I2N ,P2=PN,电动机处于额定运行状态。 说明特性上的各特殊点2 n(3)临界点C 在该点处:s=sm,T=Tm,对应的电 磁转矩是电动机所能提供的最大转矩 。Tm是异步电动机回馈制动状态所对 应的最大转矩,若忽略r1的影响时, 有T m=Tm。 n(4)起动点D 在该点处:s=1,n=0,T=Tst,I=Ist。 3.人为机械特性 n异步电动机的人为机械特性是指人为 改变电动机的电气参数而得到的机械 特性。 n由参数表达式可知,改变定子电压U1 、定子频率f1、极对数p、定子回路电 阻r1和电抗x1、转子回路电阻r2和电抗 x2,都可得到不同的人为机械特性。 (1)降低定子电压的人为机械特性 n在参数表达式中,保持其它参数不变 ,只改变定子电压U1的大小,可得改 变定子电压的人为机械特性。 n讨论电压在额定值以下范围调节的人 为特性(为什么?) 降电压人为机械特性曲线 nTmU12;TstU12;n1和sm与电压无关 TL1-恒转矩负载特性、TL2-风机类负载特性 (2)定子回路串入对称电阻的人为机械特性 n当定子电阻 r1增大时, 同步转速n1 不变,但临 界转矩Tm、 临界转差率 sm、起动转 矩Tst都变小 定子回路串入对称电阻的 接线图和人为机械特性 定子回路串入对称电抗的人为机械特性 n如果定子回路串入 对称的电抗,同步 转速n1仍不变,但 临界转矩Tm、临界 转差率sm、起动转 矩Tst也都变小。两 种接线可实际应用 于鼠笼式异步电动 机的起动,以限制 起动电流。 定子回路串入对称电抗的 接线图和人为机械特性 (3)转子回路串入对称电阻的人为机械特性 绕线式异步电动机转子回路串入 三相对称电阻的接线图和人为机械特性 分析 n当转子电阻r2增大时,同步转速n1和临界转 矩Tm不变,但临界转差率sm变大,起动转 矩Tst随转子电阻r2增大而增大,直至Tst=Tm n当转子电阻r2再增大时,起动转矩Tst反而 减小。 n转子串入对称三相电阻的方法应用于绕线 式异步电动机的起动和调速。 本章小结1 n异步电动机运行时,转子与旋转磁场存在 转差,因而能在转子中感应电势和电流, 产生电磁转矩,使电动机旋转,可见转差 率s是异步电动机的重要参量。通过频率和 绕组折算,可得到反映实际运行电动机各 量关系的等值电路,等值电路中的各种参 数可通过空载和短路试验测取。与变压器 一样,基本方程式、等值电路、相量图也 是描述电动机负载运行时的基本电磁关系 的工具。 本章小结2 n工作特性反映了异步电动机在额定电压、额 定频率时的使用性能。机械特性则是异步电 动机运行特性中最重要,三相异步电动机的 机械特性是指在电动机定子电压、频率以及 绕组参数一定的条件下,电动机电磁转矩与 转速或转差率的关系,即n=(T)或s=(T)。机 械特性可用函数表示,也可同曲线表示,用 函数表示时,有三种表达式:物理表达式、 参数表达式和实用表达式,三种表达式各有 不同的适用场合。 n作业:3-24 作业:10-1、10-2 10.2 三相异步电动机的各种运转状态 M 3 3 S1 1. 能耗制动 (1) 制动原理 制动前 S1 合上,S2 断开, M 为电动状态。 制动时 S1 断开,S2 合上。 定子: U I1 转子: n E2 I2 M 为制动状态。 n U S2 Rb I1 F F T T 第 十 章 异步电动机的电力拖动 (2) 能耗制动时的机械特性 O n T 特点: 因T 与 n 方向相反, nT 曲线在第二、 四象限。 因 n = 0 时, T = 0, nT 曲线过原点。 制动电流增大时, 制动转矩也增大; 产生最大转矩的转速不变。 I1“I1 第 十 章 异步电动机的电力拖动 (3) 能耗制动过程 迅速停车 TL O n T 1 2 制动原理 制动前:特性 1。 制动时:特性 2。 原点 O (n = 0,T = 0), a 点 b 点 惯性 a b (T0,制动开始) n 制动过程结束。 制动效果 RbI1 T 制动快。 制动时的功率 定子输入:P1 = 0,轴上输出:P2 = T0 。 动能 P2 转子电路的电能 PCu2消耗掉。 第 十 章 异步电动机的电力拖动 (4) 能耗制动运行 下放重物 TL O n T 1 2 a a 点 b 点 惯性 (T0,制动开始) b n 原点 O (n = 0,T = 0), 在TL作用下 n 反向增加 c c 点(T = TL), 制动运 行状态 以速度 nc 稳定下放重物。 制动效果: 由制动回路的电阻决定 。 第 十 章 异步电动机的电力拖动 2. 反接制动 (1) 定子反相的反接制动 迅速停车 3 M 3 3 M 3 Rb 制 动 前 的 电 路 制 动 时 的 电 路 制动原理 第 十 章 异步电动机的电力拖动 TL TL 制动前:正向电动状态。 制动时:定子相序改变, n0 变向。 O n T 1 n0 2 n0 b s = n0 n n0 = n0n n0 即:s 1 (第二象限)。 同时:E2s、I2 反向,T 反向。 a c a 点 b 点(T0,制动开始) 惯性 n c 点(n = 0,T 0), 制动结束。 到 c 点时,若未切断电源, M 将可能反向起动。 d 第 十 章 异步电动机的电力拖动 取决于 Rb 的大小。 制动效果 a O n T 1 n0 2 n0 b c 制动时的功率 Pe = m1I22 R2Rb s 0 PCu2 = m1(R2Rb ) I22 = PePm = Pe|Pm| 0 Pm = (1s ) Pe 三相电能 电磁功率Pe转子机械功率Pm定子 转子 电阻 消耗 掉 第 十 章 异步电动机的电力拖动 (2) 转子反向的反接制动下放重物 O n T 1 n0 2 b c TL a d 制动原理 定子相序不变,转子 电路串联对称电阻 Rb。 a 点 b 点(TbTL), 惯性 n c 点 ( n = 0,TcTL ) 在TL 作用下 M 反向起动 d 点( nd0,Td = TL ) 制动运 行状态 制动效果 改变 Rb 的大小, 改变特性 2 的斜率, 改变 nd 。 3 e 低速提 升重物 第 十 章 异步电动机的电力拖动 制动时的功率 s = n0n n0 第四象限: 1 (n0) Pe = m1I22 R2Rb s 0 PCu2 = m1(R2Rb ) I22 = PePm = Pe|Pm| 0 Pm = (1s ) Pe 定子输入电功率 轴上输入机械功率 (位能负载的位能) 电功率与机械功率均 消耗在转子电路中。 第 十 章 异步电动机的电力拖动 3. 回馈制动 特点:| n | | n0 |,s0。 电机处于发电机状态 。 (1) 调速过程中的回馈制动 4.5 三相异步电动机的制动 T n O f1 f1“ f1 f1“ TL a b c d T n O Y YY TL a b c d ? 3. 回馈制动 第 十 章 异步电动机的电力拖动 O n T TL n0 n0 (2) 下放重物时的回馈制动 G Rb T 3 M 3 T n TL b a c 正向电动 反接制动 d n 回馈制动 反向电动 第 十 章 异步电动机的电力拖动 0 (nn0) 0 定子发出电功率,向电源回馈电能。 0 轴上输入机械功率(位能负载的位能)。 PCu2 = PePm |Pe | = |Pm|PCu2 机械能转换成电能(减去转子铜损耗等)。 制动时的功率 s = n0n n0 = n0n n0 第四象限: Pe = m1I22 R2Rb s Pm= (1s ) Pe 第 十 章 异步电动机的电力拖动 制动效果 Rb 下放速度 。 为了避免危险的高速, 一般不串联 Rb。 O n T TL n0 n0 第 十 章 异步电动机的电力拖动 11-1 三相异步电动机的起动 方法 1. 电动机的起动指标 (1) 起动转矩足够大 Tst TL Tst (1.1 1.2) TL (2) 起动电流不超过允许范围。 异步电动机的实际起动情况 起动电流大:Ist = sc IN = (5.57) IN 起动转矩小:Tst = stTN = (1.62.2) TN 第11 章 三相 异步电动机的起动及 起动设备的计算 不利影响 大的 Ist 使电网电压降低,影响自身及其他负载 工作。 频繁起动时造成热量积累,易使电动机过热。 2. 笼型异步电动机的直接起动 (1) 小容量的电动机(PN 7.5kW) (2) 电动机容量满足如下要求: Ist IN sc = 1 4 3 + 电源总容量(kVA) 电动机容量(kW) 4.3 三相异步电动机的起动 3. 笼型异步电动机的减压起动 (1) 定子串联电阻或电抗减压起动 M 3 3 RS S1 FU S2 起动运行 M 3 XS S1 FU S2 3 11-1 三相异步电动机的起动 (2) 自耦变压器减压起动 TA 3 UN S1 FU S2 M 3 11-1 三相异步电动机的起动 (2) 自耦变压器减压起动 3 UN S1 FU S2 TA M 3 起动 4.3 三相异步电动机的起动 (2) 自耦变压器减压起动 TA 3 UN S1 FU S2 M 3 运行 11-1 三相异步电动机的起动 适用于:正常运行为联结的电动机。 (3) 星形三角形减压起动(Y 起动) 3 UN S1 FU S2 U1 U2V1 V2 W1W2 11-1 三相异步电动机的起动 适用于:正常运行为联结的电动机。 (2) 星形三角形减压起动(Y 起动) 3 UN S1 FU S2 U1 U2V1 V2 W1W2Y 起动 4.3 三相异步电动机的起动 适用于:正常运行为联结的电动机。 (2) 星形三角形减压起动(Y 起动) 运行 S2 3 UN S1 FU U1 U2V1 V2 W1W2 定子相电压比 U1PY U1P UN 3 UN = 1 3 定子相电流比 I1PY I1P U1PY U1P = 1 3 起动电流比 IstY Ist I1PY 3 I1P = 1 3 4.3 三相异步电动机的起动 Y 型起动的起动电流 IstY = Ist 1 3 起动转矩比 TstY Tst U1PY U1P = 1 3 ( ) 2 TstY = Tst 1 3 Y型起动的起动转矩 11-1 三相异步电动机的起动 频敏变阻器 频率高:损耗大,电阻大。 频率低:损耗小,电阻小。 转子电路起动时 f2 高,电阻大, Tst 大, Ist 小。 转子电路正常运行时 f2 低,电阻小, 自动切除变阻器。 4. 绕线型异步电动机转子电路串联频敏变阻器起动 频敏变阻器 11-1 三相异步电动机的起动 11-2. 改善起动性能的三相笼型异步电动机 (1) 深槽异步电动机 槽深 h 与槽宽 b 之比为:h / b = 8 12 漏电抗小 漏电抗大 增大 电流密度 起动时,f2 高, 漏电抗大,电流的集 肤效应使导条的等效 面积减小,即 R2 , 使 Tst 。 运行时, f2 很低, 漏电抗很小,集肤效 应消失,R2 。 11-2 改善起动性能的三相笼型异步 电动机 2.双笼型异步电动机 电阻大 漏抗小 电阻小 漏抗大 上笼 (外笼) 下笼 (内笼) 起动时, f2 高, 漏抗大,起主要作用, I2 主要集中在外笼, 外笼 R2 大 Tst 大。 外笼 起动笼。 运行时, f2 很低 , 漏抗很小,R2 起主要作 用, I2 主要集中在内笼。 内笼 工作笼。 11-2 改善起动性能的三相笼型异步 电动机 Rst1 Rst2 3 M 3 S1 S2 S (1) 起动过程 11-3 绕线型异步电动机转子电路串联电阻起动 串联 Rst1 和 Rst2 起动(特性 a) 总电阻 R22 = R2 + Rst1+ Rst2 n0 T n O a (R22) TLT2 a1 a2 T1 切除 Rst2 11-3 绕线型异步电动机转子电路串联电阻起动 (1) 起动过程 b (R21) n0 T n O a (R22) T2 T1 a1 a2 TL b1 b2 合上 S2 ,切除 Rst2(特性 b) 总电阻 R21 = R2+ Rst1 5. 绕线型异步电动机转子电路串联电阻起动 3 M 3 S1 S2 Rst1 Rst2 S 切除 Rst1 11-3 绕线型异步电动机转子电路串联电阻起动 合上 S1 ,切除 Rst1(特性 c) 总电阻: R2 11-3 绕线型异步电动机转子电路串联电阻起动 c (R2) b (R21) n0 T n O a (R22) T2 T1 a1 a2 TL b1 b2 c1 c2 (1) 起动过程 p 3 M 3 S1 S2 Rst1 Rst2 S 11-3 绕线型异步电动机转子电路串联电阻起动 (2) 起动级数未定时起动电阻的计算 选择 T1 和 T2 起动转矩: T1 = (0.8 0.9) TM 切换转矩: T2 = (1.1 1.2) TL 起切转矩比 = T1 T2 求出起动级数 m 根据相似三角形的几何关系来推导。 11-3 绕线型异步电动机转子电路串联电阻起动 T1 n0 nc1 TM n0 nMc = sc1 sMc c (R2) b (R21) n0 T n O a (R22) T2 T1 a1 a2 TL b1 b2 c1 c2 p T2 n0 nc2 TM n0 nMc = sc2 sMc 同理可得: T1 TM = sa1 sMa = sb1 sMb = sc1 sMc T2 TM = sa2 sMa = sb2 sMb = sc2 sMc 因为 sa2 = sb1 ,sb2 = sc1 sM R2 = T1 T2 = sMa sMb = R22 R21 所以 = T1 T2 = sMb sMc = R21 R2 11-3 绕线型异步电动机转子电路串联电阻起动 因此有下面的关系 R21 =R2 R22 =R21 =2R2 对于 m 级起动,有 R2m = mR2 式中 R2m = R2Rst1Rst2 Rstm 于是得到下式: = R2m R2 m 因为 sMc sMa sc1 = sa1= R2 R22 = 1 R2 R22 11-3 绕线型异步电动机转子电路串联电阻起动 对于 m 级起动,则有 sc1 = R2 R2m 在固有特性 c 上,有关系 T1 TN = sc1 sN = TN sNT1 m 因此可得 = R2m R2 m m = TN sNT1 lg lg 重新计算 ,校验是否在规定范围内。 11-3 绕线型异步电动机转子电路串联电阻起动 求转子每相绕组的电阻 R2 R2 = sN U2N 3 I2N 计算各级总电阻和各级起动电阻 R21 =R2 R22 =R21 R2m = R2(m1) =2R2 =m R2 Rst1 = R21R2 Rst2 = R22R21 Rstm = R2mR2(m1) 11-3 绕线型异步电动机转子电路串联电阻起动 (3) 起动级数已定时起动电阻的计算 T1 = (0.8 0.9) TM = TN sNT1 m T2 = T1 ,验算: T2 = (1.1 1.2) TL , 若不满足,重新调整,直到满足要求。 计算各级总电阻和各级起动电阻。 R2 = sN U2N 3 I2N 11-3 绕线型异步电动机转子电路串联电阻起动 由异步电动机的转速公式 可知,异步电动机有下列三种基本调速方法: (1)改变定子极对数 调速 。 (2)改变电源频率 调速 。 (3)改变转差率 调速。 十二章 异步电动机调速 一、变极调速 变极调速是改变定子绕组的极对数实现的,只用于笼型电动机。 以4极变2极为例: U相两个线圈,顺向串联, 定子绕组产 生4极磁场: 反向串联和反向并联,定子绕 组产生2极磁场: Y反并YY,2p-p YY,2p-p 注意: 当改变 定子绕 组接线 时,必 须同时 改变定 子绕组 的相序 二、 变频调速 改变三相异步电动机电源频率,可以改变旋转磁通势的同步 转速,达到调速的目的。额定频率称为基频,变频调速时,可以 从基频向上调,也可以从基频向下调。 变频调速的优点是无级变速,变速范围大,且具有较硬 的机械特性。 变频调速的缺点是有一套专门的变频电源,调速系统较 为复杂,设备投资较高。 1. 从基频向下变频调速 我们知道,三相异步电动机每相电压: 降低电源频率时,必须同时降低电源电压。降低电源电压 有两种控的制方法。 保持 =常数 : n上式是保持气隙每极磁通为常数变频调速时的机械特性方程式。 下面根据该方程式,具体分析一下最大转矩Tm及相应的转差率sm。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论