




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
The comparison tests,Theorem Suppose that and are series with positive terms, then (i) If is convergent and for all n, then is also convergent. (ii) If is divergent and for all n, then is also divergent. Ex. Determine whether converges. Sol. So the series converges.,The limit comparison test,Theorem Suppose that and are series with positive terms. Suppose Then (i) when c is a finite number and c0, then either both series converge or both diverge. (ii) when c=0, then the convergence of implies the convergence of (iii) when then the divergence of implies the divergence of,Example,Ex. Determine whether the following series converges. Sol. (1) diverge. choose then (2) diverge. take then (3) converge for p1 and diverge for take then,Question,Ex. Determine whether the series converges or diverges. Sol.,Alternating series,An alternating series is a series whose terms are alternatively positive and negative. For example, The n-th term of an alternating series is of the form where is a positive number.,The alternating series test,Theorem If the alternating series satisfies (i) for all n (ii) Then the alternating series is convergent. Ex. The alternating harmonic series is convergent.,Example,Ex. Determine whether the following series converges. Sol. (1) converge (2) converge Question.,Absolute convergence,A series is called absolutely convergent if the series of absolute values is convergent. For example, the series is absolutely convergent while the alternating harmonic series is not. A series is called conditionally convergent if it is convergent but not absolutely convergent. Theorem. If a series is absolutely convergent, then it is convergent.,Example,Ex. Determine whether the following series is convergent. Sol. (1) absolutely convergent (2) conditionally convergent,The ratio test,The ratio test (1) If then is absolutely convergent. (2) If or then diverges. (3) If the ratio test is inconclusive: that is, no conclusion can be drawn about the convergence of,Example,Ex. Test the convergence of the series Sol. (1) convergent (2) convergent for divergent for,The root test,The root test (1) If then is absolutely convergent. (2) If or then diverges. (3) If the root test is inconclusive.,Example,Ex. Test the convergence of the series Sol. convergent for divergent for,Rearrangements,If we rearrange the order of the term in a finite sum, then of course the value of the sum remains unchanged. But this is not the case for an infinite series. By a rearrangement of an infinite series we mean a series obtained by simply changing the order of the terms. It turns out that: if is an absolutely convergent series with sum , then any rearrangement of has the same sum . However, any conditionally convergent series can be rearranged to give a different sum.,Example,Ex. Consider the alternating harmonic series Multiplying this series by we get or Adding these two series, we obtain,Strategy for testing series,If we can see at a glance that then divergence If a series is similar to a p-series, such as an algebraic form, or a form containing factorial, then use comparison test. For an alternating series, use alternating series test.,Strategy for testing series,If n-th powers appear in the series, use root test. If f decreasing and positive, use integral test. Sol. (1) diverge (2) converge (3) diverge (4) converge,Power series,A power series is a series of the form where x is a variable and are constants called coefficients of series. For each fixed x, the power series is a usual series. We can test for convergence or divergence. A power series may converge for some values of x and diverge for other values of x. So the sum of the series is a function,Power series,For example, the power series converges to when More generally, A series of the form is called a power series in (x-a) or a power series centered at a or a power series about a.,Example,Ex. For what values of x is the power series convergen
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目四运营抖音短视频李丽泸州97课件
- 硅酮胶采购2025年
- 2020-2025年中级注册安全工程师之安全生产法及相关法律知识全真模拟考试试卷A卷含答案
- 二零二五年度智能家居系统集成房屋修缮合同
- 二零二五年度高级会计师职业责任担保合同
- 2025年度民事违约起诉书:涉及智慧城市建设的合同纠纷解决
- 2025版车库购置与产权登记服务合同范本
- 二零二五年度#筑梦的舞者#舞蹈培训机构品牌合作合同
- 二零二五年新型餐厅部分股权转让与餐饮品牌建设协议
- 二零二五年电商股份合作与物流配送合同
- 高素质农民培训课堂管理制度
- 现场采样人员管理制度
- 三聚氰胺表面板行业深度研究分析报告(2024-2030版)
- 大概念教学课件
- 2025年中国土状石墨原矿项目投资可行性研究报告
- 基于量子计算的IoT数据预处理与优化方法-洞察阐释
- 商圈周边交通疏导措施及优化建议
- 新生儿高胆红素血症诊治指南(2025)解读
- 《益生元与肠道健康》课件
- 电竞选手经纪合同协议
- 2025年中学教师资格考试《综合素质》考前押题密卷(含答案)实战演练题目
评论
0/150
提交评论