地震土压力计算公式探讨(重庆大学-余东升).doc_第1页
地震土压力计算公式探讨(重庆大学-余东升).doc_第2页
地震土压力计算公式探讨(重庆大学-余东升).doc_第3页
地震土压力计算公式探讨(重庆大学-余东升).doc_第4页
地震土压力计算公式探讨(重庆大学-余东升).doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

岩 土 力 学 2011年地震土压力计算公式探讨余东升1,2,吴曙光1,2,侯俊伟3 (1. 重庆大学土木工程学院,重庆 400045;2. 山地城镇建设与新技术教育部重点实验室(重庆大学),重庆 400045;3. 中煤国际工程集团重庆设计研究院,重庆 400016)摘 要:边坡支挡结构在地震期间遭到破坏是很常见的,其主要原因是地震引起土压力的增大。本文简要总结了地震土压力的研究现状,概括了国内各行业现行规范地震土压力计算公式,并分析了各个公式的特点、适用范围和各自存在问题。在此基础上,基于广义库伦理论,提出了粘性土地震主动土压力的计算公式。并通过实例分析,得到了各设计参数对地震土压力的影响规律:支挡结构与填土间的摩擦角对地震土压力影响较小,岩土抗剪强度指标等因素对地震土压力影响较大。关键词:地震;土压力;计算公式;影响因素中图分类号:TU 443 文献标识码:AThe Study of Seismic Earth Pressure Formulas Yu Dongsheng1,2,Wu Shuguang1,2,Hou Junwei3(1. College of Civil Engineering, Chongqing University, Chongqing 400045, China;2. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China;3. Chongqing Design & Research Institute, Sino-coal International Engineering Group, Chongqing 400016)Abstract:Its very common for slope retaining structures damaged during earthquakes, mainly due to the increase of earth pressure caused by earthquakes. The status of seismic earth pressure research is briefly summarized in this paper. Seismic earth pressure formulas in various existing norms are summarized, as well as their characteristics, applicability, and some related problems are briefly analyzed. On this basis, based on the generalized Coulomb theory, a new calculation formula of seismic earth pressure for cohesive soil is derived. Through the example analysis, the influence of the different design variables on seismic earth pressure is analyzed: The friction angle between retaining structure and the filling has a small effect on seismic earth pressure, while factors such as soil shear strength index have a greater effect.Key words:Earthquake;Earth pressure;Formula;Factors61 引言许多震害调查、振动台及离心机试验等都清楚地表明:地震能触发和加速边坡及其支挡结构的失稳破坏,并且这种损坏主要由地震引起的侧向土压力增大,或结构自身的水平惯性力引起的。在众多地震土压力的研究成果中,特别值得一提的主要有两点:一是日本关东大地震后,Okabe(1924)、Mononobe(1929)就地震对支挡结构的作用进行了深入的研究,基于库仑静止土压力理论,提出了著名的MO地震土压力理论,认为地震土压力强度沿墙背呈三角形分布,土压力作用点位于H/3处,开创了拟静力法研究地震土压力的时代;二是Rechards和Elms(1979)基于MO方法和Newmark的滑块模型,提出了一种计算挡土墙地震土压力的位移控制方法,即联合基本地震动参数(最大加速度和最大速度)和可接受的挡土墙位移来计算地震土压力,即认为位移是挡墙破坏的控制因素。1在粘性土地震土压力方面,Prakash(1981)2、 Okamoto(1984)3发现土的粘聚性对地震主动土压力的影响很大。王云球(1980)4以库仑土压力理论为基础,将地震时墙后破坏楔体所产生的水平惯性力作为静力,并按极限平衡原理推导出了粘性土地震土压力及其强度分布计算方法,该法可以适用于墙背倾斜,填土表面有斜坡的情况。陈学良、陶夏新(2002)5利用广义库仑理论的相关概念,拓展了MO计算式,提出了考虑粘性土广义MO计算公式。陈宪麦(2003)6给出了填土表面作用均布荷载情形的弱粘性土地震土压力解析解,但在推导过程中未考虑填土表面附近的裂缝深度。尽管已有不少研究成果,但考虑设计参数较多,计算结果适中,设计使用不太方便。2 现行地震土压力相关规范简介在我国现行规范中,虽然建筑边坡工程技术规范GB50330-20027在其条文说明中明确指出:岩土体土压力计算应考虑地震荷载因素,但是其土压力计算公式及稳定性分析中却没有显示出地震的影响。目前涉及到地震土压力的主要有公路、铁路、水工、水运等行业的规范,其中公路桥梁抗震设计细则JTJ/T B02-0120088考虑了岩土的粘聚性、坡顶加载等因素,较为简便实用,本节将重点介绍;铁路工程抗震设计规范GB5011120069则只有无粘性土的地震土压力;水工建筑物抗震设计规范DL 5073200010则未考虑了岩土的粘聚性、但根据岩土性质引入一个计算系数对地震角进行修正;水运工程抗震设计规范JTJ2559811则进一步考虑了岩土分层的影响,计算方法是先计算各层顶面和底面的地震土压力强度,再求得各层的地震土压力,最后叠加求得总的地震土压力,虽然更全面、合理,但手算较为麻烦,通常需要借助软件进行计算。公路桥梁抗震设计细则JTJ/T B02-012008在附录中给出了路基、桥台粘性填土地震主动土压力计算公式,如下: (1)其中: (2) (3)表1 地震角的取值 Table 1 Seismic angle values抗震设防烈度7度8度9度地震角()水上1.536水下2.5510式中:为地震主动土压力;为地震主动土压力系数;为系数;为墙后填土重度(kN/m3);为滑裂楔体上的均布荷载(kN/m); 为挡墙高度(m);为黏性填土的黏聚力(kPa);为填土的内摩擦角();为填土与墙背的摩擦角();为墙背与竖直方向之间的夹角(),墙背俯斜为“+” ,仰斜为“-”;为填土表面与水平面的夹角();为地震角(),见表1。3 粘性土地震主动土压力计算公式推导现行规范上的地震土压力计算公式多是在经典的Mononobe-Okabe地震土压力理论基础上发展而来的,但是考虑因素比较全面、计算结果合理的粘性土的地震土压力公式较少,本文参考MO公式的推导方法,结合“广义库仑理论”,对粘性土的地震土压力计算公式进行推导。图1粘性土地震土压力推导简图Fig.1 Diagram derived of clay seismic earth pressure发生地震时,挡土墙受水平地震惯性力、竖向地震惯性力和重力的联合作用,相当于将图1(b)所示挡土墙改变为图1(c)所示的挡土墙,即将挡土墙和挡土墙背面的填土逆时针旋转一个角,且,其中、为竖向和水平地震系数。换句话说,经过如下替换:原来的墙高用替换、墙背的倾角用替换、墙后填土的表面坡角用替换、填土的重度用替换、填土表面的均布荷载由替换,地震土压力的计算式仍可利用非地震情况下的土压力公式来计算12,则粘性土“广义库伦理论”简化公式可变换为: (4)其中:; (5); (6)如果令: (7)则有: (8)以一处重力式挡土墙为例,设计参数为:挡土墙的墙高=6.0m,坡顶均布荷载为=10KN/m,墙背与竖直方向的夹角=0,填土表面与水平面夹角=8,填土的粘聚力系数=20kPa,内摩擦角=18,墙土间摩擦角=10,填土的重度=20kN/m3,在不同抗震设防下公式(1)和公式(8)的计算结果见表2,可见,本节推导的粘性土的地震土压力公式和公路行业的公式计算结果较为吻合。表2 公式(1)和公式(8)计算结果比较Table 2 The comparison of formula (1) and formula (8) results计算公式7度抗震设防8度抗震设防9度抗震设防式(1)71.3686.44125.15式(8)67.1194.18139.64备注:单位kN/m4 地震土压力影响因素分析4.1分析目的影响地震土压力的主要因素有:填土的粘聚力、内摩擦角、墙土间摩擦角、墙背倾斜角、填土倾斜角、墙高、地震角等。分析这些影响地震地震土压力的各因素的敏感性,可以为设计参数优化提供理论依据,达到经济合理的目的。4.2分析方法地震土压力对这些参数敏感性详细分析涉及多种、多元组合,受工作量限制,本文通过一个具体的基础实例,固定其它参数,逐个在常见的范围内变化某一个参数、分析该参数因素对地震土压力的影响。影响参数代入的是公路行业的公式,因为该公式包含的参数因素多,也较为全面成熟。4.3分析过程及结果本节是以某一处重力式挡土墙为基础实例,取挡土墙的墙高=6.0m,墙背与竖直方向的夹角=0,填土表面与水平面夹角=5,填土的粘聚力系数=20kPa,内摩擦角=18,墙土间摩擦角=10,填土的重度=20kN/m3,基本烈度为8,地震角=3,则可得到地震主动土压力系数=0.576,地震主动土压力=67.84kN/m。所分析参数的常见范围为:-1020,-1030(0),1040,030(0),0 kPa30 kPa,0 kN/mkN/m,0mH30m, 010(包括有无浸水情况)6。计算结果如图2图9所示,其中(a)图为粘性土地震主动土压力系数随各因素的变化情况,(b)图为粘性土地震主动土压力随各因素的变化情况。对于粘性土地震主动土压力,通过图2图9的分析,可以得到如下结论:1)填土粘聚力、坡顶均布荷载、挡墙高度对地震土压力系数基本无影响,地震土压力与挡墙高度平方成正比,随填土粘聚力增大而线性减小,随坡顶均布荷载的增大而线性增大;2)墙背俯斜时的地震土压力和地震土压力系数比仰斜时要大,且在公式适用范围内俯斜角度越大,地震土压力和地震土压力系数值越大;3)填土表面与水平面夹角在10以下时地震土压力和地震土压力系数随其变化较小,在10以上时随其增长较快;4)填土的内摩擦角对地震土压力和地震土压力系数影响较大。地震土压力和地震土压力系数随填土的内摩擦角增大而快速减小;5)填土对墙背的摩擦角对地震土压力和地震土压力系数影响很小,地震土压力和地震土压力系数随填土对墙背的摩擦角增大而缓慢减小,到一定值后基本不再变化;6)在非浸水条件下,地震土压力和地震土压力系数基本随着地震角增大而线性增大。(a)(b)图2 墙背与竖直方向的夹角对粘性土地震土压力系数和地震土压力影响Fig.2 Influence of the angle between retaining wall back and vertical on clayey seismic earth pressure coefficient and seismic earth pressure(a)(b)图3 填土表面与水平面夹角对粘性土地震土压力系数和地震土压力影响Fig.3 Influence of the angle between the filling surface and the horizontal on clayey seismic earth pressure coefficient and seismic earth pressure(a)(b)图4 填土内摩擦角对粘性土地震土压力系数和地震土压力影响Fig.4 Influence of filling internal friction angle on clayey seismic earth pressure coefficient and seismic earth pressure(a)(b)图5 墙背与填土间的摩擦角对粘性土地震土压力系数和地震土压力影响Fig.5 Influence of the friction angle between retaining wall back and filling on clayey seismic earth pressure coefficient and seismic earth pressure(a)(b)图6 填土粘聚力对粘性土地震土压力系数和地震土压力影响Fig.6 Influence of filling cohesion on clayey seismic earth pressure coefficient and seismic earth pressure(a)(b)图7 坡顶均布荷载对粘性土地震土压力系数和地震土压力影响Fig.7 Influence of the uniform load on top of slope on clayey seismic earth pressure coefficient and seismic earth pressure(a)(b)图8 挡墙高度对粘性土地震土压力系数和地震土压力影响Fig.8 Influence of retaining wall height on clayey seismic earth pressure coefficient and seismic earth pressure(a)(b)图9 地震角对粘性土地震土压力系数和地震土压力影响Fig.9 Influence of earthquake angle on clayey seismic earth pressure coefficient and seismic earth pressure 5 结语通过本文的分析研究,可以得到如下结论:1) 现有的地震土压力计算公式,大多数从本质上说,仍是拟静力法,是在考虑了粘聚力、坡顶加载、和岩土分层等因素的基础上推导出来的;2) 通过和本文推导的公式的计算结果进行比较可以看出,在我国各行业规范中,公路行业的地震土压力公式考虑因素较多,也很简便实用。当遇到岩土分层情况时,可参照水运行业地震土压力的计算方法进行计算;3) 填土粘聚力、坡顶加载、挡墙高度对地震土压力系数基本无影响,墙背与填土间的摩擦角对地震土压力系数影响较小,填土表面与水平面夹角、填土的内摩擦角对地震压力系数影响较大。因此,在挡墙设计中要尽量减小坡顶坡度,尽可能选用抗剪强度大的土体作填料;4) 在影响地震土压力的因素中,墙背与填土间的摩擦角对地震土压力影响较小,填土抗剪强度指标、坡顶加载、挡墙高度对地震土压力影响较大。参 考 文 献1 吴世明,顾尧章译,土动力学原理M. 杭州:浙江大学出版社,1984.2 Prakash

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论