外文原文2.pdf_第1页
外文原文2.pdf_第2页
外文原文2.pdf_第3页
外文原文2.pdf_第4页
外文原文2.pdf_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Proceedingsofthe2006IEEE/RSJ InternationalConferenceonIntelligentRobotsandSystems October9-15,2006,Beijing,China MechanicalDesignofJointBrakingandUnderactuated Mechanismof“Tri-Star3“;HorizontalPolyarticularArm Equipped3-WheeledExpandableMobileRobot KenjiroTadakuma,MatsumotoMasatsuguandShigeoHirose DepartmentofMechanicalandAerospaceEngneering TokyoInstituteofTechnology 2-12-1Okayama,Meguro-ku,Tokyo152-8552Japan k-damototheroversofNASA3. Aplanetaryrovermusthavebehighlyadaptableto uneventerrain4.Theintroductionofhighlysophisticated multiple-degreesoffreedomvehiclemechanismsandthe implementationofadvancedcontrolofthesemechanisms seemstohavebeenacommonmethodtoachievesuch objectives. However,thereliabilityofthemechanismisofextreme importance,andtheresearchapproachofourlaboratoryisto realizeterrainadaptabilitywithasimplemechanism5.Atthe sametime,specialcarewasalsotakentomaximizethe dimensionsoftheroverasmuchaspossible.Thisisbeneficial becausewhenthesizeoftheroverislarge,terrainobstacles becomescomparativelysmallsothelargerovercanmove aroundonroughterrainwithoutanydelicateoradvanced controllers,asshowninFig.1.Basedonthisconsideration,we developedthehorizontalpolyarticularexpandable3-wheeled planetaryrover,“Tri-Star3“.Thecurrentwheels ofTri-StarIll arenottheexpandabletype,buttheexpandableonewillbe putonthemodelformoreeffectivepropertyofthe expandablemechanismasshowinFig.1. Fig.1ScaleEffectofExpandableMechanism Inthispaper,weshowthemechanicaldesignofthejoint brakingmechanismofthisroverindetail,anddemonstratethe underactuatedperformancebythejointbrakingmechanism. II.CONFIGURATIONOF“TRI-STAR3“ “Tri-Star3“;the3-wheeledexpandablerover,isequipped withthreehorizontalarms,andthereareactivewheelsatthe endofeacharm(Fig.2).Theconfigurationofthearmand wheelmoduleisshowninFig.3.Themostimportantpointof thisroveris,asamainactuator,theroverhasonlythree motorstorotateeachwheel.Therearejointbraking mechanismsineachjoint,drivenbyjustonesmallactuator, withdifferentfunctionsdependingonwhetherthejointis lockedorfree.Whenthejointislocked,thewheelrotatesto producepropellingforcetothebody.Ontheotherhand,when thejointisfreetorotateandthewheelrotates,thewheelcan changeitsownsteeringdirectioninitsyawaxis,orcan changetheangleofthejointofthearmtothebody.Forthis reason,thisroverislightweight,lowcost,andsimpleto control.Thetorqueofthemotoristransmittedby chain(numberltonumber2)andtheinnershaftofthejointrod isrotated.Andbythebevelgearset,therotationaldirectionis changedfromverticaldirectiontohorizontaldirection. Finally,thespurgearrotatestheinnergearfixedto wheels(number3tonumber4),thereforethewheelisrotated. Theoverviewofanactualwholeprototypemodelis showninFig.4.Therotationalmotionistransmittedfromthe motorinthearmtoasprocketbychain,whichrotatesthe bevelgearandfinallythewheel(Fig.3).Thespecificationof thisroverisshowninTable1.Thegearedmotorsofthe wheelsworkin36(W). PassiveJoint Uk.-il|ottd.4- I LVV%*LKD (b)ExpandingMode Fig.2Conceptof3-wheeledexpandablerover 1-4244-0259-X/06/$20.00C)2006IEEE 4252 (a)RetractingMade, C, -,vI 0 ; ArmModule I SpaceforI BatteriesandElectronicdevices i /1/1 I WheelModule SpurGear BrakingMechanizm .1 (a)RetractingMode Fig.4OverviewofActualPrototypeModel )Slope(climbing)(b)Slope(crossing)(c)INarrowchannel Fig.5LocomotionChangingFunctionofRover TABLEI:SpecificationofPrototypeModel WheelRadius192mm Wheel WidthofWheel167.5mm HeightofKnob8.5mm GroundClearance126mm LengthofArm400mm (Distancebetweentwo Armjoints)335mm WidthofArm71mm ThicknessofArm75mm Body LengthofBody 480mm ThicknessofBody91.5mm HeightofVehicle473mm Whole HeightofC.O.G. 21.5cm ExpandableRatio7.24 TotalWeight12.3kg III.CONCEPTOFUNDERACTUATEDFUNCTIONOF3-WHEELED EXPANDABLEROVER Inthisstudy,weproposeanewunderactuatedmethod, consistingofanactivewheelattheendofarm,andvarious jointbrakingmechanisms. 4253 ;J Knobs Step1 ):Untied :Tight Step2 Holes Step3ontheshaft DegreesofFreedom Torealizeasimilarfunctionofamultipledegrees-of- freedomarm,wesuggestthefollowingmethod. Bychangingthefrictionalconditionofeachjoint,and withthedrivingwheel,eachjointcanchangetheirownangle inasimilarfashionsothatthewholejointsperformlikean activerotationalactuator.Thismotionmakesthewholeshape ofthearmchangeableattheend.Themotionofthis configurationissimilartoexpandablegatesoftenfoundin airports. InFig.6,fromStep2toStep3,therotationaldirectionof thewheelchanges.Therefore,theshapeofthewholearm changessuchasletter“S“.Inthe3-wheeledexpandablerover, weadopttheonelink,consideringthesimplicityofthe configurationofthearm. IV.JOINTBRAKINGMECHANISM Inthischapter,thedrumtypebrakingmechanismis explainedindetail. Asabrakingmechanism,thelock-pintypemechanism6 asshowninFig.7havebeendevelopedatthepastresearch. However,inthisdesign,thepinwasnotstrongenoughfor situationssuchasthemobilerobotcollidingwithsomelarge rock,generatinganimpactloadtoeachjoint.Further,the resolutionofthesteeringangledependedonthenumberof holesontheshaftasshowninFig.7. Forabovereasons,inthisresearch,thedrumtypebraking mechanismisadopted.Toimproveuponthisearlierbraking mechanism,thefollowingamendmentswereimplemented. 1)Functionasatorquelimiter 2)Highresolutioncapabilityofthesteeringangleofthe wheel. 3)Abilitytorealizeanunderactuatedmechanism Fig.7:Loi Inadditiontotheabovefunctions,thedrumtypebraking mechanismcanadoptahalfclosedconfiguration,sothe middlestrongbrakingforcecanbeproduced,asmentionedin section3.Torealizeasimilarfunctionofamultipledegreeof freedomactivejoint,asdescribedinsection2,wedeveloped thebrakingmechanismasshowninFig.8. A.ConfigurationofBrakingMechanism Thebrakingmechanismconsistsofacammechanism, specifically,amastercamandslavecam.Whenthemaster camAisrotatedbythegearedmotor,SlavecamB1,B2 accepttheforcefromtherollerofthemastercamA. Therefore,part(B-1)andpart(B-2)rotateeachotherthrough theslavecam.Intheend,part(C-1)andpart(C-2)rotateand griptheshaft.Thetypeofthespringsaretensionspringsthat areusedtoopenthebrakemechanism. B.ProblemofBrakingMechanismthatconsistsofnormal straightshapeofcam Whenconsideringtheshapeoftheslavecam,thereisthe problemthattherotationalspeedsofthetwopartsare differentiftheshapeofthecamisidentical,suchasastraight shape(Fig.9).Therefore,thereisadifferenceofthegripping forcebetweentheclockwiserotationandthecounterclockwise rotationoftheshaft(Fig.10).Thebrakingpropertyshouldbe thesameandnotdependontherotationaldirection, consideringthatthebrakingmechanismwillbeinstalledinthe roverasthejointisbraking.Therefore,wedecidedtodesign theoptimalshapeoftheslavecamB1andB2toenablethe speedoftheangletochangethesamebetweenC1andC2. 4254 Fig.6:SimilarfunctionofMultiple (Topview) (KiD G.iD (KinD (KiintD (KED /% ShaftPalr(-1art(B-1) ,MCamr Qf _ tw % % J MasterCamA SpringPart(C-2)SlaveCamB2 (a)StructureofBrakingMmPart(B-2) (a)StructureofBrakingMechnism 01020304050607080 masterdeg sterCamA Part(C-2) (b)OverviewofBrakingMechnism i)Grippingii)Loosing (c)MotionofBrakingMechnism Fig.8:BrakingMechanismforJointofTri-StarlIl SlaveCamBi I SlaveCamB2 Fig.9:0-0Curve(StraightShapeofCams) Fig.10:0-0Curve(StraightShapeofCams) InFig.8,notethattherotationaldirectionofboth0and01 arecounterclockwise,asapracticalmatter,whenthemaster camrotatescounterclockwisedirection,thepart(B-1)rotates clockwise,inshort01isnegativevalueatthatsituation. Intheexperimentsofthissection,thedatashowninFig. 10wasobtainedbyusingthetestdeviceconsistingofafloat differentialmechanism7todirectlymeasurethetorque appliedtotherotatingshaft. C.Proposalmethodoftheshapeofcamdesignbyusingthe envelopecurve. Consideringtheproblemshownintheprevioussection, weproposethedesignmethodtomaketherotationalangle betweenthepart(B-1)andthepart(B-2)tobethesamewhen themastercammoves. Iftherotationalangleofpart(B)canbechangedarbitrarily bytherotationalangleofthemastercamA,itispossibleto maketherotationalangleofpart(B)match.Inotherwords,if therotationalangleofpart(B-1),(B-2),isanarbitrary functionoftheangleofthemastercamA(Equation1),itis desiredthattheuniqueshapeofthecamisfoundfromthat function. 0=f(0)(1) Wesettherotationalaxisofpart(B)astheoriginofthe coordinatesystem,andconsiderthecalculationinthe coordinatesystemonthepart(B)(Fig.11).Thus,the calculationoftheshapeoftheslavecamisperformedinthe samewayasthecalculationoftheenvelopecurve,whichis drawnwhenthemastercamAisrotated. Theenvelopecurvemeansthecurvethatholdsthetangent lineincommonwiththecurvedlinegroup.Thereisatheorem thatontheequationthatincludestheparametera,inshort, g(x,y,oc)=O,thex(oc),y(oc)complywiththeequation(2),(3) andthereisnoparticularityontheg(x,y,oc)=O,inaddition, (x(oc),y(oc)=(O,0)isrealized,wherethecurvelineis expressedas(x(o),y(o)istheenvelopecurveofthegroupof theg(x,y,oc)=0. 4255 5 0 -5 -10 -15 g(x(a),y(a),a)=O ag(x(a),y(a),a) =O -15r (2) (3) Inshort,wecansaythattheenvelopecurveisthetrajectory thatsomecurvedrawsbychangingitsownparameter. Inthisresearch,tocalculatetheshapeofthecamofthe brakingmechanism,wesetthecoordinateaxisandsome parametersasshowninFig.11,thereforethefunctiong(x,y, a)becomes: g(x,y,)=(x-acos(O+Oi,i)bcos(O+z)2 +(y-asin(O+Oini)bsin(O+)2-r2 InEquation(4),“ini“meanstheinitialvalue,andthe+in frontofbbecomes“+“forBIand“-“forB2. Wesettheqasthequadraticfunctionoffsothatthe changeofthedisplacementofqbecomessmoothnearOdeg. f(0)=CO2(5) Intheaboveequation,Crepresentsaconstantnumber. FromEquation5,theenvelopecurvescanbecalculated.The shapesofthecalculatedenvelopecurvesareshowninFig.12. ThecalculatedshapeofthecamisshowninFig.13.We testedanoptimizedactualmodelbasedonthiscalculated shape.TheexperimentalresultisshowninFig.14.Theangle ofB1andB2isnearlyidenticalbetween0degreesand60 degrees,asshowninFig.14. -20 -25- -25 -30 -30 -35 -40 -50510-10-505 xx (a)SlaveCamB1(b)SlaveCamB2 Fig.12:EnvelopeCurve Intheaboveequation,Crepresentsaconstantnumber. FromEquation5,theenvelopecurvescanbecalculated.The shapesofthecalculatedenvelopecurvesareshowninFig.12. ThecalculatedshapeofthecamisshowninFig.13.We testedanoptimizedactualmodelbasedonthiscalculated shape.TheexperimentalresultisshowninFig.14.Theangle ofB1andB2isnearlyidenticalbetween0degreesand60 degrees,asshowninFig.14. 011i ?0 Fig.11:CoordinateAxis Fig.13:CalculatedShapeofCams 0 -5 -10 -15 -20l 01020304050607080 0deg Fig.14:0-0Curve(CalculatedShapeofCams,) 4256 TheSpecificationofthisbrakingmechanismisas follows.Length:111(mm)xWidth:57(mm)x Thickness:15(mm)andWeightisabout422(g)includingthe servomotorwhichmaximumtorqueis0.98(Nm)madeby Futaba. Wealsocheckedthepropertybetween0andthebraking torqueofthebrakingmechanismontheunoptimized(straight) camandtheoptimizedcam.Theexperimentalresultsare showninFig.15,andFig.16respectively.Observethatin Fig.16thevibrationpropertyoftheoptimizedcamissmaller thanthatofthestraightcam.Therefore,thebrakingmechnism consistsoftheoptimizedcamgripstheshaftmorestablythan unoptimizedone. Inthissection,weproposedawayforoptimaldesignof theshapeofthecamandthroughexperimentwithanactual model,weconfirmedthepropertyoftheoptimizedcamis superior.Wewillcontinuetotestthebrakingmechanismfrom thepointsofdurability,efficiencyandsoon. Oneofthecriteriaforthisbrakingmechanismisacompact design.Materialsofthisbrakingmechanismshouldbe lightweightandhavehightensilestrength.Soweultimately choseA7075;kindofaluminum,whichhasadensityof 3.04(g/cm3)andatensilestrengthof585(N/mm2).Especially onthesurfaceofthecam,whichcontactstherollerofthe mastercam,thesurfacetreatmentwasdonetohardenthe slavecamandfordurability. 4000 4000 3500 a) 0 EH 3000 2500 2000 1500 1000 500 -20020 0Deg. 406080 Fig.16:Propertybetween0andBrakingTorqueof optimizedCam HoweverSUS440;kindofstainlesssteelwasselectedfor theshoeofthebrakingmechanismbecausethatmaterialhas higherdurability.SUS440isheavierthanA7075,butasa brakeshoetheissueofdurabilitybecomesdominant.Aftera fieldtestof300applications,itfunctionsnearlyperfectlyand thereisnobigscarfonthesurfaceofthebrakeshoe. 3500 3000 av 0 EH- 2500 2000 1500 100000 - - -E 500-20 0204060 0Deg. Fig.15:Propertybetween0andBrakingTorqueof StraightCam V.REALIZATIONOFUNDERACTUATEDMOTION Thetestdeviceofonearmandwheelmodulewasbuiltto confirmthebasicfunctionoftheunderactuatedperformances asshowninFig.17.Thedevicehasaslidingguideattheroot ofthearm,soifthefloorisnotperfectlyflat,thewheelcan alwaysmaintaincontactlikeoneoftheactualthreewheel-arm modulesofthismobilerobot,asmentionedinsection3.To simplifytheexperimentandtoconsideronlytheknife-edge model,weremovetheknobsofwheelhere.Eachjointangle 80aremeasuredbythepotentiometerputineachjoint. Weinstalledtheoptimizedbrakingmechanism(shown insectionIV)toeachjointofarm,andconfirmedtheeffectof similarfunctionofthemultipleactivejoints,andalso confirmedthatfunctionasshowninFigs.18and19.InFigs. 18and19,observethatthetwojointschangedtheirown angle.Thisistheunderactuatedmotionasexplainedinsection 3. 4257 (a)SideView(b)TopView Fig.17:TestingDeviceforUnderactuationofOneLeg Module Fig.18:Exampleo0UnderactuatedMlotionofuneLeg Module(SideView) Fig.19:Exampleof Module(TopView) 180 160 140 Firstjoint IN)9X SecondJoint dj 80 60- I 0-IV 0 05I15202530 tijmesec Fig.20:ChangingofEachJointAngleofArm Top Side IIIIIIIV Fig.21:MotionofOneLegTestModel Fig.20showstheoneoftheexampleofmeasured dataofthechangingofeachjointangleintheexperiment.In thisexperiment,whenthemeasuredrotationalspeedissmaller thanthesettingone,themastercamArotatesinthedirection toreducethetorqueofthebrakingmechanism.Ontheother hand,whenthemeasuredrotationalspeedislargerthanthe settingone,theangleofthemastercamArotatesinthe directiontoincreasethetorqueofthebrakingmechanism.As showninthisfigure,bothoftheangleoffirstjointandsecond jointarechangedinmeantime. Inaddition,Fig.21showstheunderactuatedmotioninthis experiment,andfromItoIVcorrespondtoI-IVinFig.20each other.Asaresult,weconfirmedthebasicmotionof underactuatedarm-wheelmoduleontheflatground.And Fig.22showsthemodechangingmotionoftheTri-Star3in thetopview.Thefirstshapeiswidetothemovingdirection, afterthat,theshapechangedtoslimmertothemoving direction.Asshowninthispicture,weconfirmedTri-Star3 canchangeitsownshape. 4258 Gennery,D.,Cooper,B.,Nguyen,T.,Litwin,T.,Mishkin,A.,Stone,H.; 1992.Proceedings.,1992IEEEInternationalConferenceonRobotics andAutomation12-14May1992Page(s):175-180vol.1 l1llllll_5“TheMobilityDesignCocepts/CharacteristicsProc.Int.ConfOnMobilePlanetary Robots Y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论