钢筋弯曲机毕业设计.doc_第1页
钢筋弯曲机毕业设计.doc_第2页
钢筋弯曲机毕业设计.doc_第3页
钢筋弯曲机毕业设计.doc_第4页
钢筋弯曲机毕业设计.doc_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

题 目:钢筋弯曲机设计摘 要钢筋弯曲机是建筑业常用的工程机械之一,主要用于各种型号的钢筋的弯曲,以用于工程施工工地上。通过强度计算分析,认为现有gw-40弯曲机的大部分零件有较大的设计裕量,需要改变个别零部件及电动机功率即可大幅度提高加工能力,满足40钢筋的弯曲加工。还可以升级为gw-50钢筋弯曲机. 本文所设计的gw40型半自动可调速钢筋弯曲机适用于弯曲6-40毫米钢筋之用,本机的传动机构采用全封闭式,变速杆换挡,可使工作盘得到两种转速,钢筋的弯曲角度由工作盘侧面的挡块调节,机械部分通过电器控制实现半自动。gw40型钢筋弯曲机适用于建筑行业弯曲640钢筋之用。 本机工作程序简单,弯曲形状一致,调整简单,操作方便,性能稳定,它能将q23540圆钢或832螺纹钢筋弯曲成工程中所需要的各种形状。关键词 钢筋弯曲机 ;弯矩 ;主轴扭矩abstractsteel bending machine is commonly used in the construction industry, one of construction machinery, mainly for various types of bending steel bars for construction site. strength calculation through analysis, that the existing bending machine gw-40 are larger parts of most of the design margin, need to change the individual parts and components and electrical power can significantly increase the processing capacity to meet the needs of the bending of reinforced 40. can also be upgraded to gw-50 steel bending machine. gw40 this article is designed to speed steel semi-automatic bending machine for bending 6-40 mm steel used, the machine-wide closed-end transmission, gear shift, work can be two types of disk rotational speed, angle of bending steel plate by the side of the block adjustment, the mechanical parts of electrical control through the realization of semi-automatic. gw40-type steel bending machine bending applied to the construction industry reinforced 6-40 purposes. working procedures of this machine is simple, curved shape of the same adjustment is simple, easy to operate, stable performance, it will be round or q23540 thread 8-32 bending steel into works of various forms required for.keywords steel bending machine ;moment before ;end moment ;spindle torque目 录摘 要iabstractii第1章 绪 论2第2章弯矩计算与电动机选择32.1 弯矩计算与电动机选择32.2 材料达到屈服极限时的始弯矩3第3章v带传动设计53.1v带轮的设计计算5第4章 圆柱齿轮设计84.1选择材料84.2按接触强度进行初步设计84.3齿轮校核94.4 齿轮及齿轮副精度的检验项目计算12第5章 三级圆柱齿轮的设计145.1选择材料145.2 按接触强度进行初步设计145.3 校核齿轮165.4 齿轮及齿轮副精度的检验项目计算19第6章 轴的设计216.1 计算作用在轴上的力216.2 计算支力和弯矩216.3 对截面进行校核24第7章 主轴设计277.1计算作用在轴上的力277.2计算支力和弯矩277.3 对截面进行校核29第8章 轴承的选择31总 结32参考文献33致 谢34附录135第1章 绪 论我国工程建筑机械行业近几年之所以能得到快速发展,一方面通过引进国外先进技术提升自身产品档次和国内劳动力成本低廉是一个原因,另一方面国 家连续多年实施的积极的财政政策更是促使行业增长的根本动因。本机用于弯曲各种a3钢和ii级螺纹钢,工作程式简单,弯曲形状一致,调整简单,操作方便,使用可靠,性能稳定。它能将材料完成工作中所需要的各种形状。本机使用一段时间后应将工作盘换180度方位使用,这样内部机件也改变了180度位置,使机械零件达到均匀磨损,延长机械使用寿命。受国家连续多年实施的积极财政政策的刺激,包括西部大开发、西气东输、西电东送、青藏铁路、房地产开发以及公路(道路)、城市基础设施建设等一大批依托工程项目的实施,这对于重大建设项目装备行业的工程建筑机械行业来说可谓是难得的机遇,因此整个行业的内需势头旺盛。同时受我国加入wto和国家鼓励出口政策的激励,工程建筑机械产品的出口形势也明显好转。我国建筑机械行业运行的基本环境、建筑机械行业运行的基本状况、建筑机械行业创新、建筑机械行业发展的政策环境、国内建筑机械公司与国外建筑机械公司的竞争力比较以及2004年我国建筑机械行业发展的前景趋势进行了深入透彻的分析。第2章 弯矩计算与电动机选择2.1 弯矩计算与电动机选择1. 钢筋受力情况与计算有关的几何尺寸见图2-1。设钢筋所需弯矩:mt=式中 f为拨斜柱对钢筋的作用力;fr为f的径向分力;a为f与钢筋轴线夹角。 当mt一定,a越大则拨斜柱及主轴径向负荷越小;a=arcos(l1/lo)一定,lo越大。因此,弯曲机的工作盘应加大直径,增大拨斜柱中心到主轴中心距离l0gw-50钢筋弯曲机的工作盘设计:直径400mm,空间距120mm,l0=169.7 mm,ls=235,a=43.80 图2-1 钢筋受力情况1-工作盘2-中心柱套3-拨斜柱 4-拨斜柱 5-钢筋6-插入座 2.钢筋弯曲机所需主轴扭矩及功率按照钢筋弯曲加工规范规定的弯曲半径弯曲钢筋,其弯曲部分的变形量均接近或过材的额定延伸率,钢筋应力超过屈服极限产生塑性变形。2.2 材料达到屈服极限时的始弯矩1.按40螺纹钢筋公称直径计算m0=k1ws式中,m0为始弯矩,w为抗弯截面模数,k 1为截面系数,对圆截面k 1=1.7;对于25mnsi螺纹钢筋m0=373(n/mm2),则得出始弯矩m0=3977(nm)2. 钢筋变形硬化后的终弯矩钢筋在塑性变形阶段出现变形硬化(强化),产生变形硬化后的终弯矩:m=(k 1+k0/2rx)ws式中,k0为强化系数,k0=2.1/p=2.1/0.14=15, p为延伸率,25mnsi的 p=14%,rx=r/d0,r为弯心直径,r=3 d0,则得出终弯矩 m=11850(nm) 3. 钢筋弯曲所需矩mt=(m0+m)/2/k=8739(nm)式中,k为弯曲时的滚动摩擦系数,k=1.05 按上述计算方法同样可以得出50i级钢筋(b=450 n/mm2)弯矩所需弯矩:mt=8739(nm),取较大者作为以下计算依据。4. 电动机功率由功率扭矩关系公式 a0=tn/9550=2.9kw,考虑到部分机械效率=0.75,则电动机最大负载功率 a= a0/=2.9/0.75=3.9(kw),电动机选用y系列三相异步电动机,额定功率为=4(kw),额定转速=1440r/min。5. 电动机的控制 (如图2-2所示) 图2-2 钢筋弯曲电气图第3章 v带传动设计3.1 v带轮的设计计算电动机与齿轮减速器之间用普通v带传动,电动机为y112m-4,额定功率p=4kw,转速=1440,减速器输入轴转速=514,输送装置工作时有轻微冲击,每天工作16个小时1. 设计功率根据工作情况由表8122查得工况系数=1.2,=p=1.24=4.8kw2. 选定带型根据=4.8kw和转速=1440,有图812选定a型3. 计算传动比=2.84. 小带轮基准直径由表8112和表8114取小带轮基准直径=75mm5. 大带轮的基准直径大带轮的基准直径=(1-)取弹性滑动率=0.02= (1-)=2.8=205.8mm实际传动比=2.85 从动轮的实际转速=505.26 转速误差=1.7% 对于带式输送装置,转速误差在范围是可以的6. 带速 =5.627. 初定轴间距0.7(+)(+)0.7(75+205)(75+205)196取=400mm8. 所需v带基准长度 =2+ =2 =800+439.6+10.56 =1250.16mm 查表818选取9. 实际轴间距a=400mm10. 小带轮包角 =- = =11. 单根v带的基本额定功率根据=75mm和=1440由表8127(c)用内插法得a型v带的=0.68kw12. 额定功率的增量根据和由表8127(c)用内插法得a型v带的=0.17kw13. v带的根数zz=根据查表8123得=0.95根据=1250mm查表得818得=0.93z=6.38取z=7根14. 单根v带的预紧力 =500( 由表8124查得a型带m=0.10则=500(=99.53n15. 压轴力=2=1372n 第4章 圆柱齿轮设计4.1 选择材料确定和及精度等级参考表8324和表8325选择两齿轮材料为:大,小齿轮均为40cr,并经调质及表面淬火,齿面硬度为48-50hrc,精度等级为6级。按硬度下限值,由图838(d)中的mq级质量指标查得=1120mpa;由图839(d)中的mq级质量指标查得fe1=fe2=700mpa, flim1=flim2=350 4.2 按接触强度进行初步设计1. 确定中心距a(按表8328公式进行设计) acmaa(+1)=1k=1.7 取2. 确定模数m(参考表834推荐表) m=(0.0070.02)a=1.44, 取m=3mm3. 确定齿数z,zz=20.51 取z=21z=z=5.521=115.5 取z=1164. 计算主要的几何尺寸(按表835进行计算)分度圆的直径 d=m z=321=63mm d=m z=3*116=348mm齿顶圆直径 d= d+2h=63+23=69mm d= d+2h=348+23=353mm端面压力角 基圆直径 d= dcos=63cos20=59.15mm d= dcos=348cos20=326.77mm齿顶圆压力角 =arccos=31.02 = arccos=22.63端面重合度 = z(tg-tg)+ z(tg-tg) =1.9齿宽系数 =1.3纵向重合度 =04.3 齿轮校核1. 校核齿面接触强度(按表8315校核) 强度条件:= 计算应力:=zzzzz = 式中: 名义切向力f=2005n 使用系数 k=1(由表8331查取) 动载系数kv=() 式中 v= a=83.6 b=0.4 c=6.57 =1.2齿向载荷分布系数 k=1.35(由表8332按硬齿面齿轮,装配时检修调整,6级精度k非对称支称公式计算)齿间载荷分配系数 (由表8333查取)节点区域系数 =1.5(由图8311查取) 重合度的系数 (由图8312查取) 螺旋角系数 (由图8313查取) 弹性系数 (由表8334查取) 单对齿啮合系数 z=1 = =143.17mpa许用应力:= 式中:极限应力=1120mpa 最小安全系数=1.1(由表8335查取) 寿命系数=0.92(由图8317查取) 润滑剂系数=1.05(由图8319查取,按油粘度等于350) 速度系数=0.96(按由图8320查取) 粗糙度系数=0.9(由图8321查取) 齿面工作硬化系数=1.03(按齿面硬度45hrc,由图8322查取) 尺寸系数=1(由图8323查取)则: =826mpa 满足2. 校核齿根的强度(按表8315校核) 强度条件:= 许用应力: =; 式中:齿形系数=2.61, =2.2(由图8315(a)查取) 应力修正系数,(由图8316(a)查取) 重合度系数 =1.9 螺旋角系数=1.0(由图8314查取) 齿向载荷分布系数=1.3(其中n=0.94,按表8330计算) 齿间载荷分配系数=1.0(由表8333查取) 则 =94.8mpa=88.3mpa许用应力:= (按值较小齿轮校核) 式中: 极限应力=350mpa 安全系数=1.25(按表8335查取) 应力修正系数=2(按表8330查取) 寿命系数=0.9(按图8318查取) 齿根圆角敏感系数=0.97(按图8325查取) 齿根表面状况系数=1(按图8326查取) 尺寸系数=1(按图8324查取)则 = 满足, 验算结果安全4.4 齿轮及齿轮副精度的检验项目计算1. 确定齿厚偏差代号为:6kl gb1009588(参考表8354查取)2. 确定齿轮的三个公差组的检验项目及公差值(参考表8358查取)第公差组检验切向综合公差,=0.063+0.009=0.072mm,(按表8369计算,由表8360,表8359查取);第公差组检验齿切向综合公差,=0.6()=0.6(0.009+0.011)=0.012mm,(按表8369计算,由表8359查取);第公差组检验齿向公差=0.012(由表8361查取)。3.确定齿轮副的检验项目与公差值(参考表8358选择)对齿轮,检验公法线长度的偏差。按齿厚偏差的代号kl,根据表8353m的计算式求得齿厚的上偏差=-12=-120.009=-0.108mm,齿厚下偏差=-16=-160.009=-0.144mm;公法线的平均长度上偏差=*cos-0.72sin=-0.108cos-0.72 =-0.110mm,下偏差=cos+0.72sin=-0.144cos+0.720.036sin=-0.126mm;按表8319及其表注说明求得公法线长度=87.652,跨齿数k=10,则公法线长度偏差可表示为:,对齿轮传动,检验中心距极限偏差,根据中心距a=200mm,由表查得8365查得=;检验接触斑点,由表8364查得接触斑点沿齿高不小于40%,沿齿长不小于70%;检验齿轮副的切向综合公差=0.05+0.072=0.125mm(根据表8358的表注3,由表8369,表8359及表8360计算与查取);检验齿切向综合公差=0.0228mm,(根据8358的表注3,由表8369,表8359计算与查取)。对箱体,检验轴线的平行度公差,=0.012mm,=0.006mm(由表8363查取)。确定齿坯的精度要求按表8366和8367查取。根据大齿轮的功率,确定大轮的孔径为50mm,其尺寸和形状公差均为6级,即0.016mm,齿轮的径向和端面跳动公差为0.014mm。3. 齿轮工作图(见图4-1)图4-1 大齿轮二 由于第一级齿轮传动比与第二级传动比相等,则对齿轮的选择,计算以及校核都与第一级一样 。 第5章 三级圆柱齿轮的设计5.1 选择材料1.确定hlim和flim及精度等级。参考表8324和表8325选择两齿轮材料为:大,小齿轮均为40cr,并经调质及表面淬火,齿面硬度为4850hrc,精度等级为6级。按硬度下限值,由图838(d)中的mq级质量指标查得hlim=hlim=1120mpa;由图839(d)中的mq级质量指标查得fe1=fe2=700mpa, flim1=flim2=350 mpa.5.2 按接触强度进行初步设计1. 确定中心距a(按表8328公式进行设计) acmaa(+1)=1k=1.7则 a=325mm 取a=400mm2. 确定模数m(参考表834推荐表)m=(0.0070.02)a=2.88, 取m=4mm3. 确定齿数z,z z=28 取z=28 z=172 取z=1724. 计算主要的几何尺寸(按表835进行计算)分度圆的直径 d=m z=428=112mm d=m z=688mm齿顶圆直径 d= d+2h=112+24=120mm d= d+2h=688+24=696mm齿根圆直径 端面压力角 基圆直径 d= dcos=112cos20=107.16mm d= dcos=688cos20=646.72mm齿顶圆压力角 =arccos= = arccos=端面重合度 = z(tg-tg)+ z(tg-tg) =1.15齿宽系数 =1.3 齿宽 纵向重合度 =05.3 校核齿轮1.校核齿面接触强度(按表8330校核) 强度条件:= 计算应力:=zzzzz = 式中: 名义切向力f=34107n 使用系数 k=1(由表8331查取) 动载系数 kv=() 式中 v= a=83.6 b=0.4 c=6.57 kv=1.05 齿向载荷分布系数 k=1.35(由表8332按硬齿面齿轮,装配时检修调6级精度k非对称支称公式计算) 齿间载荷分配系数 (由表8333查取) 节点区域系数 =1.5(由图8311查取) 重合度的系数 (由图8312查取) 螺旋角系数 (由图8313查取) 弹性系数 (由表8334查取) 单对齿齿合系数 z=1 = =301.42mpa许用应力:= 式中:极限应力=1120mpa 最小安全系数=1.1(由表8335查取) 寿命系数=0.92(由图8317查取) 润滑剂系数=1.05(由图8319查取,按油粘度等于350) 速度系数=0.96(按由图8320查取) 粗糙度系数=0.9(由图8321查取) 齿面工作硬化系数=1.03(按齿面硬度45hrc,由图8322查取) 尺寸系数=1(由图8323查取)则: =826mpa 满足2. 校核齿根的强度(按表8315校核) 强度条件:= 许用应力: =; 式中:齿形系数=2.61, =2.2(由图8315(a)查取) 应力修正系数,(由图8316(a)查取) 重合度系数 =1.9 螺旋角系数=1.0(由图8314查取) 齿向载荷分布系数=1.3(其中n=0.94,按表8330计算) 齿间载荷分配系数=1.0(由表8333查取) 则 =94.8mpa=88.3mpa许用应力:= (按值较小齿轮校核) 式中: 极限应力=350mpa 安全系数=1.25(按表8335查取) 应力修正系数=2(按表8330查取) 寿命系数=0.9(按图8318查取) 齿根圆角敏感系数=0.97(按图8325查取) 齿根表面状况系数=1(按图8326查取) 尺寸系数=1(按图8324查取)则 = 满足, 验算结果安全5.4 齿轮及齿轮副精度的检验项目计算1.确定齿厚偏差代号为:6kl gb1009588(参考表8354查取)2.确定齿轮的三个公差组的检验项目及公差值(参考表8358查取)第公差组检验切向综合公差,=0.063+0.009=0.072mm,(按表8369计算,由表8360,表8359查取);第公差组检验齿切向综合公差,=0.6()=0.6(0.009+0.011)=0.012mm,(按表8369计算,由表8359查取);第公差组检验齿向公差=0.012(由表8361查取)。3.确定齿轮副的检验项目与公差值(参考表8358选择)对齿轮,检验公法线长度的偏差。按齿厚偏差的代号kl,根据表8353的计算式求得齿厚的上偏差=-12=-120.009=-0.108mm,齿厚下偏差=-16=-160.009=-0.144mm;公法线的平均长度上偏差=*cos-0.72sin=-0.108cos-0.72 =-0.110mm,下偏差=cos+0.72sin=-0.144cos+0.720.036sin=-0.126mm;按表8319及其表注说明求得公法线长度=87.652,跨齿数k=10,则公法线长度偏差可表示为:对齿轮传动,检验中心距极限偏差,根据中心距a=200mm,由表查得8365查得=;检验接触斑点,由表8364查得接触斑点沿齿高不小于40%,沿齿长不小于70%;检验齿轮副的切向综合公差=0.05+0.072=0.125mm(根据表8358的表注3,由表8369,表359及表8360计算与查取);检验齿切向综合公差=0.0228mm,(根据8358的表注3,由表8369,表8359计算与查取)。对箱体,检验轴线的平行度公差,=0.012mm,=0.006mm(由表8363查取)。4. 确定齿坯的精度要求按表8366和8367查取。根据大齿轮的功率,确定大轮的孔径为50mm,其尺寸和形状公差均为6级,即0.016mm,齿轮的径向和端面跳动公差为0.014mm。5. 齿轮工作图见图5-1。图5-1 小齿轮第6章 轴的设计6.1 计算作用在轴上的力大轮的受力:圆周力 =径向力 轴向力 小轮的受力:圆周力 = 径向力 =轴向力 =6.2 计算支力和弯矩1.垂直平面中的支反力:2. 水平面中的支反力: = =2752.3n = =261n3. 支点的合力 ,: = 轴向力 应由轴向固定的轴承来承受。4. 垂直弯矩:截面 截面 5. 水平弯矩:截面截面 =2752 =504n6. 合成弯矩:截面截面7. 计算轴径截面 截面8. 轴的受力及结构尺寸见图6-1所示。图6-1 轴的受力及结构尺寸简图6.3 对截面进行校核1. 截面校核 (由表412得) 齿轮轴的齿 (由表4117得) (由表4117得)s1.8则 轴的强度满足要求2. 截面校核 (由表412得) 齿轮轴的齿 (由表4117得) (由表4117得)s1.8则 轴的强度满足要求3. 轴的结构简图见图6-2所示。 图6-2 轴第7章 主轴设计7.1 计算作用在轴上的力1.齿轮的受力:扭矩 t t=圆周力 =径向力 轴向力 2. 工作盘的合弯矩mt=(m0+m)/2/k=8739(nm)式中,k为弯曲时的滚动摩擦系数,k=1.05 按上述计算方法同样可以得出50i级钢筋(b=450 n/mm2)弯矩所需弯矩:mt=8739(nm)由公式mt=式中 f为拨斜柱对钢筋的作用力;fr为f的径向分力;a为f与钢筋轴线夹角。 则 工作盘的扭矩 所以t齿轮能够带动工作盘转动7.2 计算支力和弯矩1.垂直平面中的支反力:2.水平面中的支反力: = =11198.37n = =-3217.9n 3.支点的合力 ,: = 轴向力 应由轴向固定的轴承来承受。4.垂直弯矩:截面 截面 5.水平弯矩:截面截面 =11198.37 =-66.77n6.合成弯矩:截面截面7.计算轴径截面 截面7.3 对截面进行校核1.截面校核 (由表412得) 齿轮轴的齿 (由表4117得) (由表4117得)s1.8则 轴的强度满足要求。主轴的结构简图见图 7-1所示。图7-1 主轴第8章 轴承的选择1. 根据拨盘的轴端直径选取轴承,轴承承受的力主要为径向力,因而采用深沟球轴承, 选定为型号为16008的轴承,其中16008的技术参数为d=40mm d=68mm b=9mm2. 16008轴承的配合的选择:轴承的精度等级为d级,内圈与轴的配合采用过盈配合,轴承内圈与轴的配合采用基孔制,由此轴的公差带选用k6,查表得在基本尺寸为200mm时,it6de 公差数值为29um,此时轴得基本下偏差ei=+0.017mm,则轴得尺寸为mm。外圈与壳体孔的配合采用基轴制,过渡配合,由此选用壳体孔公差带为m6,it6基本尺寸为68mm时的公差数值为0.032mm,孔的基本上偏差es=-0.020,则孔的尺寸为mm。 总 结近三个月的毕业设计终于结束了,通过这段日子的设计学习,自己的专业知识和独立思考问题的能力有了很大的提高,对我走向社会从事本专业工作有着深远的影响。现在就此谈谈对本次毕业设计过程中的认识和体会。首先,我学会了查阅资料和独立思考。我的课题是钢筋弯曲机的设计。在设计过程中,真正体会到了实践的重要性。我曾到建筑工地去参观学习,了解现场环境和设备,真正从实际出发来考虑自己的设计。同时,广泛深入图书馆,实事求是,认真查阅有关书籍资料,锻炼了自己的分析问题、解决问题的能力。因是两人合作项目,在设计时,也充分体会到了合作的重要性,培养了自己的团队精神。不可否认,在这个过程中,也遇到不少困难,所幸的是得到了段老师的悉心指导,起到了点石成金的作用,大大启发了我,使我能不断前进。其次,认识到实践的重要性。这次设计我做了很多重复工作、无用功,但是这些重复工作和无用功积累了设计经验。同时也认识到设计不能只在脑子里想其结构、原理,必须进行实际操作。另外,也应从多个角度来思考问题的所在,尝试其它的方法,以求找到最佳方法,因为即使想的很完美,但到实际的设计时会遇到很多想不到的实际问题。在设计的过程中,也出现了一些客观不足的问题,就是支架,减速器的箱盖只能靠想象,不能根据实际的情况来作合适、客观地修改,难免有些缺点和不足,由于诸多原因,本次设计存在一些不足和有待改善的地方,希望老师能够看待。最后,衷心感谢段老师的细心指导和教导,使我在大学里的最后一段时间里,学到了更多的知识。参考文献1 吴宗泽主编.机械设计实用手册.北京:化学工业出版社2 江耕华.陈启松主编.机械传动手册.北京:煤炭工业出版社3 机械化科学研究院编.实用机械设计手册.北京:中国农业机械出版社4 西北工业大学机械原理及机械零件教研室编.机械设计.北京:高等教育出版社5 陈作模主编.机械原理.北京:高等教育出版社6 王光铨主编.机床电力拖动与控制.北京:机械工业出版社7 马晓湘.钟均祥主编.画法几何及机械制图.广州:华南理工大学出版社8 廖念针主编.互换性与测量技术基础.北京:中国计量出版社9 实用机械电气技术手册.机械工业出版社10 罗伯特.机械设计中的机械零件(英文版.第三版) 北京:机械工业出版社11 约瑟夫e.希格力机械工程设计(英文版.第六版) 北京:机械工业出版社12 m.f.斯伯茨 .机械零件设计(英文版.第七版) 北京:机械工业出版社致 谢非常感谢老师在我大学的最后学习阶段毕业设计阶段给自己的指导,从最初的定题,到资料收集,到写作、修改,到论文定稿,她们给了我耐心的指导和无私的帮助。为了指导我们的毕业论文,他们放弃了自己的休息时间,他们的这种无私奉献的敬业精神令人钦佩,在此我向他们表示我诚挚的谢意。同时,感谢所有任课老师和所有同学在这四年来给自己的指导和帮助,是他们教会了我专业知识,教会了我如何学习,教会了我如何做人。正是由于他们,我才能在各方面取得显著的进步,在此向他们表示我由衷的谢意。并祝所有的老师培养出越来越多的优秀人才,桃李满天下!附录1国际研讨会、自动化和控制系统008年7月14 - 17日在coex,韩国汉城 vtv:实时避障移动机器人利用lms自适应当地的路径规划 kyung woon kwak1澳,jeong2,秀赫kim3 kwak4尹恩惠和马1 机械工程系系主任、机械、航空、航天、系统工程,韩国现代科学技术学院、大田、韩国(电话:+ 82 - 42 - 869 - 3252;电子邮件:kyungwoonkaist.ac.kr)。2 机械工程、机械、航空、航天、系统工程,韩国现代科学技术学院、大田、韩国 (电话:+ 82 - 42 - 869 - 3252;电子邮件:hothip29kaist.ac.kr)。3 部机械工程、机械、航空、航天、系统工程,韩国现代科学技术学院、大田、韩国 (电话:+ 82 - 42 - 869 - 3228;电子邮件:soohyunkaist.ac.kr)。4 部机械工程、机械、航空、航天、系统工程,韩国现代科学技术学院、大田、韩国 (电话:+ 82 - 42 - 869 - 3212;电子邮件:ykkwakkaist.ac.kr)。摘要: 介绍了一种新的算法,叫做虚拟切线向量(vtv),为实时移动机器人障碍为避免局部路径规划中存在的问题,提出了室内环境。这是一个二维空间利用二维激光测量系统(lms)检测的障碍。vtv由两个过程。第一个定义从三分虚拟环绕障碍得到了应用。第二个决定运动方向的结合重力向量的目标的位置和切向向量得到环绕的障碍。大小。切取的向量的平方成正比的半径的障碍来生成一个短包围的路径。这个vtv用几个案例验证了算法的性能和表现得更好的相比与流行的算法,即所谓的虚拟力场(vff)算法。关键词:移动机器人避障算法,虚拟切向量,吸引力向量,障碍军人和扩展。1.引言 由三大类(本地化、测绘、和路径计划)。本地化和映射的治疗同时,称为大满贯(同步本地化和映射)。为路径规划,那里是全球化的路径规划和当地的路径规划。这个论文对避障为当地的路径规划。一名球探移动机器人的应用领域中收集和战争敌人对我们提供信息的力量。一名球探机器人将向敌人的基地,采用全局地图。然而,可能会有意外的困难并不表示在地图上。在这种情况下,机器人而产生一个本地地图必须避开障碍物通过传感器。实时避障技术必要产生局部路径规划。它是这样成功的关键问题的应用移动机器人系统。几种算法的障碍回避了1 - 2、5 - 6。虚拟力场(vff)算法3用融合的潜力现场方法和直方图网格。基本概念该算法运用虚拟的吸引力,那么反感对一个目标、障碍的力量。该方法简单易行,且容易实现,但不稳定在窄颈和地方最小的情况,例如在一个u形障碍例子。这个向量场直方图(vfh)4具有局部最小为同样的情况也各不相同vff方法3 - 4。另一种方法来避免一个障碍是动态的窗口法(dwa型)7,是哪一种认为机器人的动力学、dwa型的用途只有速度和转速去了目标的位置。这些算法有缺点,尤其是在逃离当地陷阱如上所述。在除了有余地的旅程。新算法vtv(虚拟的切线矢量)来减轻一些问题本文提出的方法。这个基本的概念vtv围堵和扩大合作的障碍通过应用激光测量系统()。一个运动,然后确定方向合成的吸引力向量,被称为引力向量,沿着向量的包围的障碍。这个vtv用matlab仿真算法该算法性能及可行性应用程序。 2.激光测量系统 整个算法是基于实时测量一个障碍,因此只使用部分信息。一个应用作为工具的障碍检测。这是基于激光近程传感器测量距离从机器人障碍使用时间的飞行(tof)。传感器有力量5vdc源、测量范围的60至4095毫米以扫的角度和扫描时间240控寄存器/扫描。实际运行情况的依赖色泽。3.vtv向量(虚拟切) 3.1包围和扩大的障碍有三个步骤用于算法这有助于缓解这一问题发生的陷阱例为u障碍。第一个是模型作为一个圆圈的障碍三个方面的信息。这个第二,作为一个大规模的机器人模型;这个环绕的障碍是扩大补偿这一点减少。三是定义一个方向,沿著它机器人必须搬到离了陷阱。当一个移动机器人移动到一个不知名的吗应用环境中,获取信息关于障碍:两个终点以及最近的目的是通过传感器检测到。三一点信息,独特的圈子构建(图1)。移动机器人被视为大众观点和环绕的障碍是那么加大赔偿这减少(图2)。所产生的障碍更换的包围和扩大过程是指一个虚拟的障碍。利用在图3、符号的几何数量和细节移动方向进行了综述公式在eq。 图1 包围 图2 扩大过程中获得一个虚拟的障碍确保任何部分的一个障碍不能错过的按测量、适当的采样率是必要的,但这些和其他的细节可以治愈的形状不包含在这纸。3.2 vtv避障算法关键的理念相结合vtv算法结的切向矢量的包围障碍和重力向量的目标,来定义机器人运动的方向。圆切线向量是在中间点或最近点吗在三分得到应用。这个重力向量计算在机器人的位置由于集中的一点引力场的目标。这个机器人的运动方向可以表示为如下: 切向量的大小的平方成正比半径的虚拟世界障碍。 防止zigzagging导致了机器人我们分开,两种运动,每个模式2例。“模式1时,至少有一个点得到了应用不是位于(图3)。案例1例2是定义在这样一种方式来选择通往目标的短一点。如果内积前(n-1)-st运动方向和礼物可切向矢量是正面的,用合成向量作为未来运动方向,如果是负面的,使用结向量作为下一个消极的运动方向。那是,如果所有的三分之一都位于成一行,然后模式2(图4)。在这种情况下,半径的圆(障碍)是无限的,制作的规模切;重力向量的矢量无限即可被忽略了。这个障碍都被看作是一个长壁和移动机器人动作沿墙。在这种模式下, 例1、2中的应用的模式一样1。总体流程的发展vtv表现为流程图,如图5 图3个符号和应用向量(模式一) 图4运用向量(2)的模式4.仿真结果4.1与现有算法相比 仿真结果的一个典型例子,通过vffvtv看见一些比较的特点。图6显示那些从vff算法3,图7从该算法vtv。抽样频率用于模拟了0.01几秒钟。一种视觉检测的路线算法和更少的曲线表明光滑的另一件事。完毕时的运动目标是5秒,3秒的vff和我们的吗vtv算法,respectively.显示大大减少在一次。 图5 vtv流程图 图6 先前的算法(vff)图7 算法(vtv)4.2验证性能用了几个事例,vtv表现来验证表演:多障碍,一个长壁的类型障碍、u型障碍。在这张图,矩形是原始障碍和黄圆圈是实时虚拟的障碍。他们可能不被看见在打印。图8展示了良好的表现为典型的一些障碍。图9和图10证明这一点vtv克服局部极小的问题当地的路径规划算法,许多其他有着千丝万缕的联系。图8多重的障碍 图9长的墙型障碍图10 u型障碍5.探讨和总结 提出了一种实时避障算法(vtv)提出一种局部路径规划。首先,一个虚拟的被定义为一个循环障碍和随后的扩大补偿的移动机器人的大规模点。然后一个切线向量结合重力矢量被使用机器人的运动方向。所产生的障碍避免vtv方法大大降了时间去目标位置产生一个光滑的、更少弯曲的路径和减轻局部极小的问题 经常出现在先前的算法。但是注意许多需要提高交互的时候机器人的动力学和光滑的控制,这是部分未来的研究课题。虽然vtv方法通过matlab仿真,证明了lms自适应吗检测过程模型,从真正的实验室测试。因此vtv算法考虑有优秀的可行性,真实的情况应用程序。付:外文翻译 电火花加工 电火花加工法对加工超韧性的导电材料(如新的太空合金)特别有价值。这些金属很难用常规方法加工,用常规的切削刀具不可能加工极其复杂的形状,电火花加工使之变得相对简单了。在金属切削工业中,这种加工方法正不断寻找新的应用领域。塑料工业已广泛使用这种方法,如在钢制模具上加工几乎是任何形状的模腔。 电火花加工法是一种受控制的金属切削技术,它使用电火花切除(侵蚀)工件上的多余金属,工件在切削后的形状与刀具(电极)相反。切削刀具用导电材料(通常是碳)制造。电极形状与所需型腔想匹配。工件与电极都浸在不导电的液体里,这种液体通常是轻润滑油。它应当是点的不良导体或绝缘体。 用伺服机构是电极和工件间的保持0.00050.001英寸(0.010.02mm)的间隙,以阻止他们相互接触。频率为20000hz左右的低电压大电流的直流电加到电极上,这些电脉冲引起火花,跳过电极与工件的见的不导电的液体间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论