轴承透盖.dwg
轴承透盖.dwg

双搅拌轴搅拌摩擦焊焊机设计【带PROE三维】【23张图纸】【优秀】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:272275    类型:共享资源    大小:16.51MB    格式:RAR    上传时间:2014-04-12 上传人:上*** IP属地:江苏
50
积分
关 键 词:
双搅拌 摩擦 磨擦 焊焊机 设计 proe 三维 图纸 优秀
资源描述:

双搅拌轴搅拌摩擦焊焊机设计

45页 13000字数+说明书+任务书+开题报告+proe三维图+23张CAD图纸【详情如下】

proe三维图.rar

X向工作台面板.dwg

丝杠螺母.dwg

任务书.doc

传动丝杠.dwg

伺服系统大齿轮.dwg

修改版装配图.dwg

修改版装配图222.dwg

双搅拌轴搅拌摩擦焊焊机设计开题报告.doc

双搅拌轴搅拌摩擦焊焊机设计论文.doc

工作台前右盖板.dwg

工作台前左盖板.dwg

工作台箱体.dwg

搅拌头夹具.dwg

搅拌系统大V带轮.dwg

搅拌系统小V带轮.dwg

搅拌轴.dwg

机体前盖板.dwg

机架A2.dwg

机盖.dwg

液压缸推杆连接器.dwg

电机座.dwg

综述报告.doc

表格.rar

轴承透盖.dwg

10mm搅拌头.dwg

15mm搅拌头.dwg

2主轴箱A1.dwg

2装配图A0.dwg


摘    要


   搅拌摩擦焊技术是90年代发展起来的、自发明到工业应用时间跨度最短和发展最快的一项新型固相连接新技术,公认为是最有前途和最适合航空材料以及结构件制造的工艺方法之一。搅拌摩擦焊(FSW)是一个相对较新的固态焊接过程。这种连接技术具有节能,高效,环保,用途广泛的特点。特别是,它可以用于高强度航天铝合金和其他金属的合金,这些合金是很难通过常规焊接熔焊。 FSW被认为是金属连接在十年的发展中最有标志性的成果。[6]

   本文设计出的双搅拌轴摩擦焊焊机,总功率约3千瓦,适合于普通厚度的铝及其合金的工艺试验试件的焊接,搅拌摩擦头转速约6000r/min,焊接速度为500—600mm/min,最大加工焊缝厚度15mm,焊缝长度500mm。文中介绍了搅拌摩擦焊焊接技术的基本原理和特点,概要地介绍了搅拌摩擦焊的技术优势、研究现状、工业应用和发展前景。针对工艺试验试件搅拌摩擦焊机,主要设计、计算和校核了设备各主要部分,均能够满足试验用焊机的要求。

   本机器由于采用双搅拌头,因此相对于一般的搅拌摩擦焊焊机效率更高。相对于一般的搅拌摩擦焊焊机,该机器也非常的经济和容易操作。

关键词:双搅拌轴摩擦焊;固相焊接;铝合金焊接;焊机设计

  目  录

摘  要

Abstract

第1章 绪论1

1.1搅拌摩擦焊简介1

1.2国内外研究现状及发展趋势2

1.2.1搅拌摩擦焊技术发展历史及研究成果2

1.2.2 国内搅拌轴摩擦焊技术发展发展应用3

1.2.3搅拌摩擦焊中双搅拌轴摩擦焊技术目前的应用情况和前景5

1.3本次设计的内容和意义6

第2章 双搅拌轴搅拌摩擦焊机设计7

2.1 焊机的总体设计以及规划7

2.2 各部件设计8

2.2.1 搅拌头及夹具设计8

2.2.2 搅拌系统功率计算9

2.2.3搅拌系统传动齿轮设计11

2.2.4搅拌轴的设计15

2.2.5搅拌系统V带设计20

2.2.6X-Y工作台设计26

2.2.7传动丝杠设计27

2.2.8减速齿轮的设计30

2.2.9液压缸选择33

第3章 AutoCAD与Pro/E软件简介34

3.1软件简介34

3.2三维模型35

第4章 总结与展望37

参考文献38

致  谢39


在提及双搅拌轴摩擦焊缝技术的工作原理前,我们先讲讲搅拌摩擦焊的工作原理:搅拌摩擦焊过程中,一个柱形带特殊轴肩和针凸的搅拌头旋转着缓慢插入被焊接工件,搅拌头和被焊接材料之间的摩擦剪切阻力产生了摩擦热,使搅拌头邻近区域的材料热塑化(焊接温度一般不会达到和超过被焊接材料的熔点),当搅拌头旋转着向前移动时,热塑化的金属材料从搅拌头的前沿向后沿转移,并且在搅拌头轴肩与工件表层摩擦产热和锻压共同作用下,形成致密固相连接[6]。

     相对于搅拌摩擦焊的工作原理,双搅拌摩擦焊缝为采用两个转动相反的搅拌头同时进行焊接,由于两个搅拌头转动方向相反,产生的工作扭矩因相互抵消而减弱,焊接过程中采用较小的侧向装夹力就能实现可靠的连接。在双搅拌头复杂的机械力和摩擦热的作用下,塑性金属的流动、焊接温度场、应力应变场都将受到影响,这会对焊件性能产生很大的影响。

     虽然两者看起来是十分的相似,无非是多了一个搅拌轴,但是双搅拌轴摩擦焊相对于搅拌摩擦焊有以下优点:(a)可以得到比搅拌摩擦焊更宽的焊缝区域;(b)焊接质量更高;(c)两个搅拌头同时焊接可以产生更多的热量,该方法可以运用于钢及其他高温合金搅拌摩擦焊中;(d)可以确保在较小的扭矩下实现材料的可靠连接,(e)生产效率更高。

    目前双搅拌轴摩擦焊有以下几种:平行并列式双头(Parallel Twin-stir)搅拌摩擦焊、前后交错排列式双头(Staggered Twin-stir)搅拌摩擦焊、前后一字排列式双头(Tandem Twin-stir)搅拌摩擦焊。

(2)双搅拌轴摩擦焊技术取得得成就

    TWI采用双搅拌轴进行了双头搅拌摩擦焊焊接,试验中得出了在6mm厚6082-T6铝合金一字排列式双头搅拌摩擦焊搭接接头中,无论前进侧还是后退侧的焊缝区域残留氧化物均有所减少,前后交错排列式双头搅拌摩擦焊3mm厚5083-H111铝合金搭接接头的金相分析表明,焊接区域尺寸可达板厚度的4.3倍。

    在一系列的试验后,事实证明了双搅拌轴摩擦焊的优点远远大于其不足之处。多头系统可以确保在较小的扭矩下实现材料的可靠连接。采用 前后交错排列式双头搅拌摩擦焊工艺,用于材料加工和搭接焊具有独特优势,而且可以在更大的对接间隙下实现对接接头的可靠连接[7]。

    由此,在接下来的几年内,双搅拌轴摩擦焊技术将会得到越来越广泛的应用于各个领域。   通过对相关资料、文献的查找,获得相关资料,了解双搅拌摩擦焊焊接原理及相关工艺,了解其的应用范围,了解双搅拌摩擦焊在焊接中的优势,了解双搅拌轴摩擦焊的研究现状和在工业中的应用,以及搅拌摩擦焊的发展前景。参照已有的双搅拌轴摩擦焊技术设计相关资料,设计一台能焊接焊缝厚度为15mm,焊缝长度为500mm的双搅拌轴摩擦焊实验用焊机。在写设计说明书的过程中,要求对关键部位的设计写得比较详细、具体,并校核该实验用焊机的各主要部分。


内容简介:
浙江理工大学本科毕业设计(论文)任务书陈伟杰同学( 机械设计制造及其自动化专业/班级:09(4) ) 现下达毕业设计(论文)课题任务书,望能保质保量地认真按时完成。课题名称双搅拌轴搅拌摩擦焊机设计主要任务与目标搅拌摩擦焊技术是90年代发展起来的、自发明到工业应用时间跨度最短的一项固相连接新技术。著名的B o e i n g、NASA、 BAE、 HONDA、 GE、HITACHI、MARTIN等公司购买了此项技术,并已大量的在航天、航空、车辆、造船等行业得到成功地应用。本项目拟与其他同学合作开发设计一台双搅拌轴搅拌摩擦焊机,适合于普通厚度的平板铝及其合金的工艺试验试件的焊接, 重点要解决的问题:1)双搅拌轴搅拌摩擦焊机整体设计;2)双搅拌轴搅拌摩擦焊机搅拌系统设计;目标:提出的设计方案可行,结构设计合理,完成的三维、二维图纸满足生产要求。主要内容与基本要求主要设计内容有:1)确定整机的设计方案; 2)搅拌系统方案设计;3)焊机装置结构设计,完成三维、二维图纸;基本要求:按照课题内容,完成总体方案设计,完成三维、二维装配图和零件图,总计不少于2张零号图纸;通过运动仿真完善设计。完成毕业设计要求的各种文档,包括文献综述、开题报告、外文翻译及毕业设计论文等。严格按照进度安排,保质保量完成所承担的任务;遵守实验室规定。主要参考资料及文献阅读任务查阅与课题有关的文献(论文、书籍或手册等)不少于10篇(部),写出符合要求的文献综述报告。主要参考文献如下:1 沈璐.陈影.葛继平.沈长斌异种金属材料搅拌摩擦焊的研究现状及展望期刊论文-电焊机 2010(6)2 栾国红.柴鹏.孙成斌钛合金的搅拌摩擦焊探索期刊论文-焊接学报 2005(11)3 李光.李从卿.董春林.栾国红动态控制低应力无变形搅拌摩擦焊技术期刊论文-航空制造技术 2007(z1)4 李兵.谢里阳.王磊.何雪浤搅拌摩擦焊工艺与机理的研究期刊论文-现代制造技术与装备 2008(1)5 任淑荣.马宗义.陈礼清搅拌摩擦焊接及其加工研究现状与展望期刊论文-材料导报 2007(1)6 黄华.董仕节.刘静先进的搅拌摩擦焊技术期刊论文-有色金属 2006(1)7 王训宏.王快社搅拌摩擦焊的发展现状及存在的问题期刊论文-焊接技术 2006(6)8 R.S. Mishra, Z.Y. Ma. Friction stir welding and processing J. Materials Science and Engineering R 2005 (50): 178.9 L.B. Johannes, R.S. Mishra. Multiple Passes of Friction Stir Processing for The Creation of Superplastic 7075 Aluminum J. Materials Science and Engineering: A 2007 (464):255-260.10 Lienert, T.J., Stellwag, W.L. Jr., Grimmett, B.B. and Warke, R.W., Friction welding studies on mild steel, Supplement to the Welding Journal, 2003, Vol. 82 No. 1, pp. 1s-9s.外文翻译任务阅读2篇以上(10000字符左右)的外文材料,完成2000汉字以上的英译汉翻译。英文文献参考如下:1 K. Leskovics, M. Kollar, P. Barczy . A study of structure and mechanical properties of welded joints in polyethylene pipesJ. Materials Science and Engineering ,2006,A 419 :138143.2 Wolters M,Venema B. Butt welding of polyethylene pipesJ. Welding in the world,1985,23(9/10):202-207.计划进度:起止时间内容2012.12.012012.12.07毕业设计前期资料准备、毕业设计任务书、外文翻译任务布置。2012.12.082012.12.31教师指导学生查阅资料(包括外文资料),撰写文献综述、开题报告及完成外文资料翻译等工作。完成文献综述、开题报告及完成外文资料翻译放假前交指导教师。2013.01.12013.01.07完成文献综述、开题报告及完成外文资料翻译等等工作。指导教师审核学生上交的文献综述、开题报告及外文资料翻译等,为小组交流、开题报告答辩做准备。2013.01.082013.01.13完成开题报告答辩工作;进行总体方案设计。2013.01.132013.04.05完成搅拌系统,传动机构设计,零件图绘制。2013.04.062013.04.15毕业设计中期检查指导情况,学生完成情况,以及表格与记录的填写情况。2013.04.162013.05.10三维装配图,运动仿真,二维零件图,装配图,论文撰写。学生完成课题设计,提交毕业设计(论文)。2013.05.112013.05.15教师对毕业设计(论文)的审阅;评议小组分组审阅。2013.05.162009.05.20论文答辩实习地点指导教师签 名年 月 日系 意 见系主任签名: 年 月 日学院盖章主管院长签名: 年 月 日3浙江理工大学本科毕业设计(论文)开题报告班 级机械设计制造及其自动化09(4)班姓 名陈伟杰课题名称双搅拌轴搅拌摩擦焊机设计开题报告(包括选题意义、研究的基本内容与拟解决的主要问题、总体研究思路与可行性分析及预期研究成果、研究工作计划等内容,非艺术类不少于3000字)目 录1 选题的背景与意义2 国内外研究现状和发展趋势2.1 搅拌摩擦焊的发展历史及研究成果2.2 国内搅拌轴摩擦焊的发展及应用2.3 搅拌摩擦焊中双搅拌轴搅拌摩擦焊目前的应用情况和前景3 研究的基本内容与拟解决的主要问题3.1 基本内容3.2 待解决的主要问题4 研究方案、可行性分析及预期研究成果5 研究工作计划(进度安排)参考文献(开题报告全文附后)成绩:答辩意 见(从选题、任务工作量、质量预期、可行性等几个方面)答辩组长签名: 年 月 日系主任审核意见签名:年 月 日双搅拌轴搅拌摩擦焊机设计 陈伟杰(机械设计制造及其自动化09(4)班 B09300405)1 选题的背景与意义 1991年搅拌摩擦焊(Friction stir WeldingFSW)由英国焊接研究所(The Welding lnstirate-TWl)发明,这项杰出的焊接技术一步一步地为世界制造技术的进步做出了巨大的贡献。 自1991年搅拌摩擦焊(Friction stir WeldingFSW)被发明到现在,该项技术已经在国内外的众多领域出现它的身影。如今,搅拌摩擦焊焊已经在诸多制造领域(船舶、轨道列车、航天、航空、汽车、兵器、电子电力等)达到规模化、工业化的应用水平1。 双搅拌轴摩擦焊缝技术作为搅拌摩擦焊的新型搅拌技术,它具有以下优势:(1)两个搅拌头同时焊接可以产生更多的热量,该方法可以运用于钢及其他高温合金搅拌摩擦焊中(2)可以确保在较小的扭矩下实现材料的可靠连接。这些优点可以使得双搅拌轴摩擦焊缝技术将搅拌摩擦焊的发展空间得到进一步的拓展,将推动制造业更快更好地发展,同时也必将拥有更广阔的市场,在不久的将来必将迎来快速的发展和应用的高峰。2 国内外搅拌摩擦焊的发展状况及研究成果2.1 搅拌摩擦焊的发展历史及研究成果 搅拌摩擦焊在其发明初期主要解决厚度1.2毫米的铝合金板材焊接问题;1996年,用FSW技术解决了612毫米的铝、镁、铜合金的连接1997年实现了12-25毫米厚铝合金板的搅拌摩擦焊并且在宇航结构件上得到应用。1999年搅拌摩擦焊可以焊接50毫米厚的铜合金及75毫米厚度的铝合金零件和产品。2004年,英国焊接研究所已经能够单道单面实现100毫米厚铝合金板材的搅拌摩擦焊。迄今,在材料的厚度上,单道焊可以实现厚度为0.8100mm铝合金材料的焊接:双道焊可以焊接180mm厚的对接板材。最近,又开发了可以连接0.4mm铝板的微型搅拌摩擦焊技术2。 搅拌摩擦作为一种优选焊接技术,已经在从技术研究向高层次的工程化和工业化应用阶段发展。就拿国外的例子来说:在美国的宇航制造工业、北欧的船舶制造工业、日本的高速列车制造等制造领域。总之搅拌摩擦焊已经广泛地涉及到了在船舶制造工业、航空航天工业、轨道交通及陆路交通工业、汽车工业以及兵器、建筑、电力、能源、家电等工业。 搅拌摩擦在今年来取得的成就主要可以从以下几方面来体现:(1)搅拌摩擦焊在船舶制造工业上的应用 目前搅拌摩擦焊在船用铝合金的焊接方面研究应用较多,几乎可以焊接所有系列的铝合金材料,另外,搅拌摩擦焊也可以实现铝合金与铜合金、铝合金与镁合金等不同材料的焊接。搅拌摩擦焊与普通摩擦焊相比,因不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金时要求对表面进行去除氧化膜处理,并要求在48 h内进行焊接,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。因此,搅拌摩擦焊是船用铝合金结构首选的连接技术。(2)搅拌摩擦焊在航天航空工业上的应用以英国焊接研究所、波音、空客以及美国月蚀公司为代表的搅拌摩擦焊技术开发和应用的先锋已经取得了丰硕的成果。近期的研究结果表明搅拌摩擦焊可以在飞机机翼结构、翼盒结构、机身结构、舱门结构、裙翼结构、机舱气密隔板以及货物装卸结构等方面得到应用3。(3)搅拌摩擦焊在高速列车铝合金焊接的应用在搅拌摩擦焊出现后,搅拌摩擦焊由于是一种无需外加焊接材料的焊接方法,因此没有熔化焊接时选择焊接材料的困难,也节省了焊材费用。更重要的是没有熔化焊接凝固时的一次结晶过程,克服了焊接高强铝合金时的结晶裂纹、气孔和夹杂倾向,不会产生焊缝塌陷问题,也不会形成焊缝铸造组织和低强区。因此搅拌摩擦取代了先前的熔化焊,成为焊接高速列车时优先选择的焊接方法4。(4)搅拌摩擦焊在其他领域的应用 搅拌摩擦焊除了上述3个领域外,还在轨道交通及陆路交通工业、汽车工业在兵器、建筑、电力、能源、家电等工业中的应用也越来越广泛。而且都取得了或多或少的成就5。2.2 国内搅拌轴摩擦焊的术发展发展应用 2002年,北京航空制造工程研究所与英国焊接研究所正式签署搅拌摩擦焊专利许可协议,并在技术合作的基础上成立了中国搅拌摩擦焊中心。中国搅拌摩擦焊中心的成立标志着搅拌摩擦焊技术正式登陆中国。中国搅拌摩擦焊中心全权代表英国焊接研究所,发售和管理中国地区(包括香港、澳门和台湾)的搅拌摩擦焊技术专利许可,从此为搅拌摩擦焊技术在中国地区的发展、推广和工业化应用打开了大门6。 采用搅拌摩擦焊焊接的铝合金材壁机 图(1) 图(2)搅拌摩擦加工技术的发展 自搅拌摩擦焊进入国内后,较快的运用于我国工业上的许多领域(船舶制造行业、航天制造工业、轨道交通行业等)。 搅拌摩擦焊在国内的应用现状,主要通过船舶制造行业、航天制造工业两方面来介绍。首先在船舶制造行业,2006年4月,我国设计制造了国内第一台用于大型船用型材料拼焊的搅拌摩擦焊设备,此后,中国搅拌摩擦焊中心大力发展铝合金型材壁板的搅拌摩擦焊制造。其次,搅拌摩擦焊在航天制造工业也发挥着重大的作用。目前,国内对于2000系列、7000系列以及铝锂合金的材料制成的太空交通运载工具都优先采用搅拌摩擦焊。中国搅拌摩擦焊中心于十五期间重点对航天运载火箭搅拌摩擦焊开展了系统的科研攻关,国内的航天制造工业企业也积极采用了搅拌摩擦焊技术。 除却上述的两个领域外,搅拌摩擦焊在国内还广泛应用于汽车制造业、轨道交通行业、电子电力能源行业7。 上图(2)为搅拌摩擦焊在国内的发展趋势。随着搅拌摩擦焊研究、技术开发与应用推广的不断深入,基于搅拌摩擦的基本原理形成了材料链接、材料改姓、材料成行等多种材料加工方法。 总之,在中国,搅拌摩擦焊的研究、开发和推广应用才刚刚起步,在市场化的环境下,通过引进、消化、吸收和技术创新,搅拌摩擦得到了快速发展,尤其在航空、航天等领域、在国家政策和项目的支持下,搅拌摩擦焊必将在我国其他工业领域得到较快的推广。2.3搅拌摩擦焊缝中双搅拌轴搅拌摩擦焊目前的应用情况和前景(1) 双搅拌轴摩擦焊的工作原理 在提及双搅拌轴摩擦焊缝技术的工作原理前,我们先讲讲搅拌摩擦焊的工作原理:搅拌摩擦焊过程中,一个柱形带特殊轴肩和针凸的搅拌头旋转着缓慢插入被焊接工件,搅拌头和被焊接材料之间的摩擦剪切阻力产生了摩擦热,使搅拌头邻近区域的材料热塑化(焊接温度一般不会达到和超过被焊接材料的熔点),当搅拌头旋转着向前移动时,热塑化的金属材料从搅拌头的前沿向后沿转移,并且在搅拌头轴肩与工件表层摩擦产热和锻压共同作用下,形成致密固相连接接头。 相对于搅拌摩擦焊的工作原理,双搅拌摩擦焊缝为采用两个转动相反的搅拌头同时进行焊接,由于两个搅拌头转动方向相反,产生的工作扭矩因相互抵消而减弱,焊接过程中采用较小的侧向装夹力就能实现可靠的连接。在双搅拌头复杂的机械力和摩擦热的作用下,塑性金属的流动、焊接温度场、应力应变场都将受到影响,这会对焊件性能产生很大的影响8。 虽然两者看起来是十分的相似,无非是多了一个搅拌轴,但是双搅拌轴摩擦焊相对于搅拌摩擦焊有以下优点:(a)可以得到比搅拌摩擦焊更宽的焊缝区域;(b)焊接质量更高;(c)两个搅拌头同时焊接可以产生更多的热量,该方法可以运用于钢及其他高温合金搅拌摩擦焊中;(d)可以确保在较小的扭矩下实现材料的可靠连接,(e)生产效率更高。 目前双搅拌轴摩擦焊有以下几种:平行并列式双头(Parallel Twin-stir)搅拌摩擦焊、前后交错排列式双头(Staggered Twin-stir)搅拌摩擦焊、前后一字排列式双头(Tandem Twin-stir)搅拌摩擦焊。(2)双搅拌轴摩擦焊取得得成就 TWI采用双搅拌轴进行了双头搅拌摩擦焊焊接,试验中得出了在6mm厚的6082-T6铝合金一字排列式双头搅拌摩擦焊搭接接头中,无论前进侧还是后退侧的焊缝区域残留氧化物均有所减少,前后交错排列式双头搅拌摩擦焊3mm厚的5083-H111铝合金搭接接头的金相分析表明,焊接区域尺寸可达板厚度的4.3倍。 在一系列的试验后,事实证明了双搅拌轴摩擦焊的优点远远大于其不足之处。多头系统可以确保在较小的扭矩下实现材料的可靠连接。采用 前后交错排列式双头搅拌摩擦焊工艺,用于材料加工和搭接焊具有独特优势,而且可以在更大的对接间隙下实现对接接头的可靠连接。 由此,在接下来的几年内,双搅拌轴摩擦焊缝技术将会得到越来越广泛的应用于各个领域。3 研究的基本内容与拟解决的主要问题3.1 基本内容在接下来的时间里,我将会通过ProE、CAD等软件画出双搅拌轴搅拌摩擦焊中的双搅拌轴部分的二维图和三维模型并结合ProE的仿真功能初步的做出其工作原理的仿真。其中涉及到的工作包括以下几个方面。1) 掌握双搅拌轴的工艺要求;2) 建立机构运动的数学模型;3) 确定合理的参数,得到机构的大致轮廓;4) 根据获得的参数在ProE中设计机构的结构,包括零部件和装配体,对关键的搅拌轴运动部分进行有限元分析,并在ProE中进行仿真;5) 设计完整体装配后,进行二维加工图纸绘制。 图(3)为一个电机带动的双搅拌轴的三维装配图3.2 拟解决的主要问题 搅拌摩擦焊在国内外都已经被工业化的应用于航天航空、汽车制造等工业领域,因此单轴的搅拌摩擦焊设备在这些工业领域已经随处可见。但是,双搅拌摩擦焊设备在国内还是比较少见,也还没有被大范围的使用,因此,我的主要待解决的问题就是设计出一个传动系统可以由一个电机来同时带动两个搅拌轴和如何将该机构于搅拌摩擦设备相配套使用。4 研究方案、可行性分析及预期研究成果本课题以双搅拌轴搅拌摩擦焊机为对象,根据工艺要求,以双搅拌轴为分析的主体,在分析符合的参数后,确定双搅拌轴的内部机构和参数。从而,进一步的确定双搅拌轴的工作过程。4.1 研究方案双搅拌轴的内部机构的三维效果如图(3)所示,一个电机通过齿轮传动带动左右两个搅拌轴一起转动,两个搅拌轴由于通过齿轮传动,朝相反的方向转动。进而使得这两个搅拌轴可以同步加工,可以大大提高生产效率。当然这样的机构也可以成直线排列,用于提高焊接质量。4.2 可行性分析 该机构主要是通过齿轮传动将两个搅拌轴联系在一起,有一个电机带动同步转动。因此,从工艺的角度看,这样的机构比较简单,容易实现。而且,这样的机构在其他的领域也被广泛的应用,它只是运用了齿轮的传动。目前TWI已经发明了直线排列的双搅拌轴。4.3 预期研究成果本课题主要研究的是双搅拌轴的内部结构设计,只要掌握机构设计的一般流程,完成的机构的设计计算(该机构有一定的通用性),确定零件的参数,绘制机构图纸。最终研制一种可以完成搅拌摩擦焊过程的部件。5 研究工作计划(进度安排)起止时间内容2012年11月上旬下达毕业论文任务2012年11月20日完成中外文资料收集2012年12月12日完成外文翻译、文献综述2012年12月31日完成开题报告2013年1月15日完成开题答辩2013年2月中旬应用proe进行可行性分析2013年2月下旬初步运用proe仿真2013年3月中旬完成二维工程图纸的设计2013年3月下旬完成三维零部件设计并装配,努力实现仿真2013年4月15日完成论文初稿2013年4月30日完成实习报告2013年5月上旬部分论文提前答辩2013年5月中旬完成论文定稿2013年5月下旬完成论文答辩2013年6月(离校前)论文修改(优秀论文压缩为规定字数),交纸质和电子稿参考文献1 中国机床商务网 /Tech_news/Detail/3970.html2鄢东洋.史清宇.吴爱萍.Juerqen Silvanus 搅拌摩擦焊应力变形有限元模拟的研究进展期刊论文-焊接 2009(1)3李光.李从卿.栾国红.董春林薄壁铝合金搅拌摩擦焊焊接应力变形与控制期刊论文-焊接 2009(1)4张友寿.何建军.谢志强.蒋蔚翔搅拌摩擦焊接技术基础及其工程应用期刊论文-材料导报 2008(1)5董春林 栾国红 搅拌摩擦焊在中国应用发展现状概述-北京航空制造工程研究所6栾国红;柴鹏;孙成斌钛合金的搅拌摩擦焊探索期刊论文-焊接学报 2005(11)7柯黎明 搅拌摩擦焊工艺及其应用期刊论文-工艺与新技术 2000(02)8关桥轻金属材料结构制造中的搅拌摩擦焊技术与焊接变形控制期刊论文-航空科学技术 2005(04)9J. J. Vagi, R. P. Meister, and M. D. Randall, DMIC Report 244, Defense Metals Information Center, Battelle Memorial Institute, August 1968. 10Terry Khaled, Ph.D. USA AN OUTSIDER LOOKS AT FRICTION STIR WELDING 11R.S. Mishraa,*, Z.Y. Mab USA FIRCTION STIR WELDING AND PROCESSING12Hassan Kh A A , Norman A F. Stability of nugget zone grain structures in high strength Al alloy friction stir welds during solution treatment. Acta Materialia , 2003 , 51 (8) : 1 9231 936浙浙江江理理工工大大学学本科毕业设计(论文)题题 目目 双搅拌轴搅拌摩擦焊机设计双搅拌轴搅拌摩擦焊机设计 学学 院院 机械与自动控制学院机械与自动控制学院 专业班级专业班级 0909 机械设计制造及其自动化(机械设计制造及其自动化(4 4)班)班 姓姓 名名 陈伟杰陈伟杰 学学 号号 B09300405B09300405 指导教师指导教师 李红军李红军 系系 主主 任任 胡明胡明 学院院长学院院长 胡旭东胡旭东 二二一三一三年年五五月月十二十二日日浙浙 江江 理理 工工 大大 学学机械与自动控制学院机械与自动控制学院毕业设计诚信说明我谨在此保证:本人所做的毕业设计,凡引用他人的研究成果均已在参考文献或注释中列出。设计说明书与图纸均由本人独立完成,没有抄袭、剽窃他人已经发表或未发表的研究成果行为。如出现以上违反知识产权的情况,本人愿意承担相应的责任。 声明人(签名):2013 年 5 月 12 日2摘摘 要要搅拌摩擦焊技术是 90 年代发展起来的、自发明到工业应用时间跨度最短和发展最快的一项新型固相连接新技术,公认为是最有前途和最适合航空材料以及结构件制造的工艺方法之一。搅拌摩擦焊(FSW)是一个相对较新的固态焊接过程。这种连接技术具有节能,高效,环保,用途广泛的特点。特别是,它可以用于高强度航天铝合金和其他金属的合金,这些合金是很难通过常规焊接熔焊。 FSW 被认为是金属连接在十年的发展中最有标志性的成果。6本文设计出的双搅拌轴摩擦焊焊机,总功率约 3 千瓦,适合于普通厚度的铝及其合金的工艺试验试件的焊接,搅拌摩擦头转速约 6000r/min,焊接速度为 500600mm/min,最大加工焊缝厚度 15mm,焊缝长度 500mm。文中介绍了搅拌摩擦焊焊接技术的基本原理和特点,概要地介绍了搅拌摩擦焊的技术优势、研究现状、工业应用和发展前景。针对工艺试验试件搅拌摩擦焊机,主要设计、计算和校核了设备各主要部分,均能够满足试验用焊机的要求。本机器由于采用双搅拌头,因此相对于一般的搅拌摩擦焊焊机效率更高。相对于一般的搅拌摩擦焊焊机,该机器也非常的经济和容易操作。关键词关键词:双搅拌轴摩擦焊;固相焊接;铝合金焊接;焊机设计AbstractFriction stir welding (FSW) was firstly used in the 1990s, which is swiftest in development and is shortest in time from being invented to being applied, it is also treated as one of the technology that have a bright future and the most suitable for aviation and component manufacture.Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. This task is to sign a machine used in laboratory. Its power is about three kilowatt, rotation rate approximately is 6000r/min, and welding speed is from 500 to 600mm/min. It can be apply to welding the aluminum and aluminum alloys. In addition, the welding thickness cant exceed 15mm and length 500mm. In this paper, the basal principle and features of FSW is introduced, and the priority, prospect and application are also expounded. Importantly, main parts of the FSW machine was designed and calculated, the calculation results shows that the FSW machine designed in the paper can accord with the demand of the testing in laboratory. The advantage of this machine is that it is more efficient than the normal FSW machine because it has a twin-stir.Compared with other machine,it is also very cheap and easy-to-use.KeyKey wordswords:Twin-stir Friction welding;Solid phase welding;Aluminum alloys welding;Application prospect;Welding machine design 目 录摘 要Abstract第 1 章 绪论.11.1 搅拌摩擦焊简介 .11.2 国内外研究现状及发展趋势 .21.2.1 搅拌摩擦焊技术发展历史及研究成果.21.2.2 国内搅拌轴摩擦焊技术发展发展应用.31.2.3 搅拌摩擦焊中双搅拌轴摩擦焊技术目前的应用情况和前景.51.3 本次设计的内容和意义 .6第 2 章 双搅拌轴搅拌摩擦焊机设计.72.1 焊机的总体设计以及规划.72.2 各部件设计.82.2.1 搅拌头及夹具设计.82.2.2 搅拌系统功率计算.92.2.3 搅拌系统传动齿轮设计.112.2.4 搅拌轴的设计.152.2.5 搅拌系统 V 带设计.202.2.6X-Y 工作台设计.262.2.7 传动丝杠设计.272.2.8 减速齿轮的设计.302.2.9 液压缸选择.33第 3 章 AUTOCAD 与 PRO/E 软件简介.343.1 软件简介.343.2 三维模型.35第 4 章 总结与展望.37参考文献.38致 谢.39浙江理工大学本科毕业设计(论文)1第 1 章 绪论1.1 搅拌摩擦焊简介 1991 年搅拌摩擦焊(Friction stir WeldingFSW)由英国焊接研究所(The Welding lnstirate-TWl)发明,这项杰出的焊接技术一步一步地为世界制造技术的进步做出了巨大的贡献。 自 1991 年搅拌摩擦焊(Friction stir WeldingFSW)被发明到现在,该项技术已经在国内外的众多领域出现它的身影。如今,搅拌摩擦焊焊已经在诸多制造领域(船舶、轨道列车、航天、航空、汽车、兵器、电子电力等)达到规模化、工业化的应用水平。如在船舶制造领域,在 1996 年搅拌摩擦焊就在挪威MARINE 公司成功地应用在铝台金快速舰船的甲板、侧板等结构件的流水线制造。在轨道车辆制造领域,日本 HITACHI 公司首先于 1997 年将搅拌摩擦焊技术应用于列车车体的快速低成本制造。成功实现了大壁板铝合金型材的工业化制造在世界宇航制造领域搅拌摩擦焊已经成功代替熔焊实现了大型空间运载工具如运载火箭和航天飞机等的大型高强铝合金燃料贮箱的制造,波音公司的DELTA II 型和 Iv 型火箭已经全部实现了搅拌摩擦焊制造 t 并于 1999 年首次成功发射升空。2000 年世界汽车工业,如美国 TOWER 汽车公司等就利用搅拌摩擦焊实现了汽车悬挂支架、轻合金车轮、防撞缓冲器、发动机安装支架以及铝合金车身的焊接。2002 年 8 月,美国月蚀航空公司利用 FSW 技术研制出了全搅拌摩擦焊轻型商用飞机,并且首次试飞成功7。至2004年9月,全世界约有130家各个行业的公司和大学、研究机构获得了英国焊接研究所授权的搅拌摩擦焊非独占性专利许可。英国、美国、法国、德国、瑞典、日本和中国等先后获得了该专利的使用权。至今为止我国先后已经有二十多家单位。获得了该项专利的使用权8。双搅拌轴摩擦焊缝技术作为搅拌摩擦焊技术的一种,它的最大特点就是可以提高生产效率。同时,它也可以使得焊缝区域更大,焊接质量更高。目前存在的双搅拌轴一般采用两个转动相反的搅拌头同时进行焊接。双搅拌轴搅拌摩擦焊机设计2 在不久的将来,搅拌摩擦焊技术将会一直以任何一种焊接方法无法比拟的速度发展,在更多的领域发挥着它的作用。1.2 国内外研究现状及发展趋势1.2.1 搅拌摩擦焊技术发展历史及研究成果 搅拌摩擦焊在其发明初期主要解决厚度1.2毫米的铝合金板材焊接问题;1996年,用FSW技术解决了612毫米的铝、镁、铜合金的连接1997年实现了12-25毫米厚铝合金板的搅拌摩擦焊并且在宇航结构件上得到应用。1999年搅拌摩擦焊可以焊接50毫米厚的铜合金及75毫米厚度的铝合金零件和产品。2004年,英国焊接研究所已经能够单道单面实现100毫米厚铝合金板材的搅拌摩擦焊。迄今,在材料的厚度上,单道焊可以实现厚度为0.8100mm铝合金材料的焊接:双道焊可以焊接180mm厚的对接板材。最近,又开发了可以连接0.4mm铝板的微型搅拌摩擦焊技术9。 搅拌摩擦作为一种优选焊接技术,已经在从技术研究向高层次的工程化和工业化应用阶段发展。就拿国外的例子来说:在美国的宇航制造工业、北欧的船舶制造工业、日本的高速列车制造等制造领域10。总之搅拌摩擦焊已经广泛地涉及到了在船舶制造工业、航空航天工业、轨道交通及陆路交通工业、汽车工业以及兵器、建筑、电力、能源、家电等工业。 搅拌摩擦在今年来取得的成就主要可以从以下几方面来体现:(1)搅拌摩擦焊在船舶制造工业上的应用 目前搅拌摩擦焊在船用铝合金的焊接方面研究应用较多,几乎可以焊接所有系列的铝合金材料,另外,搅拌摩擦焊也可以实现铝合金与铜合金、铝合金与镁合金等不同材料的焊接。搅拌摩擦焊与普通摩擦焊相比,因不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金时要求对表面进行去除氧化膜处理,并要求在48 h内进行焊接,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。因此,搅拌摩擦焊是船用铝合金结构首选的连接技术。浙江理工大学本科毕业设计(论文)3(2)搅拌摩擦焊在航天航空工业上的应用以英国焊接研究所、波音、空客以及美国月蚀公司为代表的搅拌摩擦焊技术开发和应用的先锋已经取得了丰硕的成果。近期的研究结果表明搅拌摩擦焊可以在飞机机翼结构、翼盒结构、机身结构、舱门结构、裙翼结构、机舱气密隔板以及货物装卸结构等方面得到应用11。(3)搅拌摩擦焊在高速列车铝合金焊接的应用在搅拌摩擦焊出现后,搅拌摩擦焊由于是一种无需外加焊接材料的焊接方法,因此没有熔化焊接时选择焊接材料的困难,也节省了焊材费用。更重要的是没有熔化焊接凝固时的一次结晶过程,克服了焊接高强铝合金时的结晶裂纹、气孔和夹杂倾向,不会产生焊缝塌陷问题,也不会形成焊缝铸造组织和低强区。因此搅拌摩擦取代了先前的熔化焊,成为焊接高速列车时优先选择的焊接方法。(4)搅拌摩擦焊在其他领域的应用 搅拌摩擦焊除了上述3个领域外,还在轨道交通及陆路交通工业、汽车工业在兵器、建筑、电力、能源、家电等工业中的应用也越来越广泛。而且都取得了或多或少的成就。1.2.2 国内搅拌轴摩擦焊技术发展发展应用 2002 年,北京航空制造工程研究所与英国焊接研究所正式签署搅拌摩擦焊专利许可协议,并在技术合作的基础上成立了中国搅拌摩擦焊中心。中国搅拌摩擦焊中心的成立标志着搅拌摩擦焊技术正式登陆中国。中国搅拌摩擦焊中心全权代表英国焊接研究所,发售和管理中国地区(包括香港、澳门和台湾)的搅拌摩擦焊技术专利许可,从此为搅拌摩擦焊技术在中国地区的发展、推广和工业化应用打开了大门12。双搅拌轴搅拌摩擦焊机设计4 图 1-1 采用搅拌摩擦焊焊接的铝合金材壁机 图 1-2 搅拌摩擦加工技术的发展 自搅拌摩擦焊进入国内后,较快的运用于我国工业上的许多领域(船舶制造行业、航天制造工业、轨道交通行业等) 。 搅拌摩擦焊在国内的应用现状,主要通过船舶制造行业、航天制造工业两方面来介绍。首先在船舶制造行业,2006 年 4 月,我国设计制造了国内第一台用于大型船用型材料拼焊的搅拌摩擦焊设备,此后,中国搅拌摩擦焊中心大力发展铝合金型材壁板的搅拌摩擦焊制造。其次,搅拌摩擦焊在航天制造工业也发挥着重大的作用。目前,国内对于 2000 系列、7000 系列以及铝锂合金的材料制成的太空交通运载工具都优先采用搅拌摩擦焊。中国搅拌摩擦焊中心于十五期间重点对航天运载火箭搅拌摩擦焊开展了系统的科研攻关,国内的航天制造工业企业也积极采用了搅拌摩擦焊技术。 除却上述的两个领域外,搅拌摩擦焊在国内还广泛应用于汽车制造业、轨道交通行业、电子电力能源行业。 上图 1-2 为搅拌摩擦焊在国内的发展趋势。随着搅拌摩擦焊研究、技术开发与应用推广的不断深入,基于搅拌摩擦的基本原理形成了材料链接、材料改姓、材料成行等多种材料加工方法。 总之,在中国,搅拌摩擦焊的研究、开发和推广应用才刚刚起步,在市场化的环境下,通过引进、消化、吸收和技术创新,搅拌摩擦得到了快速发浙江理工大学本科毕业设计(论文)5展,尤其在航空、航天等领域、在国家政策和项目的支持下,搅拌摩擦焊必将在我国其他工业领域得到较快的推广。1.2.3 搅拌摩擦焊中双搅拌轴摩擦焊技术目前的应用情况和前景(1)双搅拌轴摩擦焊技术的工作原理 在提及双搅拌轴摩擦焊缝技术的工作原理前,我们先讲讲搅拌摩擦焊的工作原理:搅拌摩擦焊过程中,一个柱形带特殊轴肩和针凸的搅拌头旋转着缓慢插入被焊接工件,搅拌头和被焊接材料之间的摩擦剪切阻力产生了摩擦热,使搅拌头邻近区域的材料热塑化(焊接温度一般不会达到和超过被焊接材料的熔点),当搅拌头旋转着向前移动时,热塑化的金属材料从搅拌头的前沿向后沿转移,并且在搅拌头轴肩与工件表层摩擦产热和锻压共同作用下,形成致密固相连接6。 相对于搅拌摩擦焊的工作原理,双搅拌摩擦焊缝为采用两个转动相反的搅拌头同时进行焊接,由于两个搅拌头转动方向相反,产生的工作扭矩因相互抵消而减弱,焊接过程中采用较小的侧向装夹力就能实现可靠的连接。在双搅拌头复杂的机械力和摩擦热的作用下,塑性金属的流动、焊接温度场、应力应变场都将受到影响,这会对焊件性能产生很大的影响。 虽然两者看起来是十分的相似,无非是多了一个搅拌轴,但是双搅拌轴摩擦焊相对于搅拌摩擦焊有以下优点:(a)可以得到比搅拌摩擦焊更宽的焊缝区域;(b)焊接质量更高;(c)两个搅拌头同时焊接可以产生更多的热量,该方法可以运用于钢及其他高温合金搅拌摩擦焊中;(d)可以确保在较小的扭矩下实现材料的可靠连接, (e)生产效率更高。 目前双搅拌轴摩擦焊有以下几种:平行并列式双头(Parallel Twin-stir)搅拌摩擦焊、前后交错排列式双头(Staggered Twin-stir)搅拌摩擦焊、前后一字排列式双头(Tandem Twin-stir)搅拌摩擦焊。(2)双搅拌轴摩擦焊技术取得得成就 TWI采用双搅拌轴进行了双头搅拌摩擦焊焊接,试验中得出了在6mm厚6082-T6铝合金一字排列式双头搅拌摩擦焊搭接接头中,无论前进侧还是后退侧的焊缝区域残留氧化物均有所减少,前后交错排列式双头搅拌摩擦焊3mm厚双搅拌轴搅拌摩擦焊机设计65083-H111铝合金搭接接头的金相分析表明,焊接区域尺寸可达板厚度的4.3倍。 在一系列的试验后,事实证明了双搅拌轴摩擦焊的优点远远大于其不足之处。多头系统可以确保在较小的扭矩下实现材料的可靠连接。采用 前后交错排列式双头搅拌摩擦焊工艺,用于材料加工和搭接焊具有独特优势,而且可以在更大的对接间隙下实现对接接头的可靠连接7。 由此,在接下来的几年内,双搅拌轴摩擦焊技术将会得到越来越广泛的应用于各个领域。1.3 本次设计的内容和意义通过对相关资料、文献的查找,获得相关资料,了解双搅拌摩擦焊焊接原理及相关工艺,了解其的应用范围,了解双搅拌摩擦焊在焊接中的优势,了解双搅拌轴摩擦焊的研究现状和在工业中的应用,以及搅拌摩擦焊的发展前景。参照已有的双搅拌轴摩擦焊技术设计相关资料,设计一台能焊接焊缝厚度为15mm,焊缝长度为 500mm 的双搅拌轴摩擦焊实验用焊机。在写设计说明书的过程中,要求对关键部位的设计写得比较详细、具体,并校核该实验用焊机的各主要部分。浙江理工大学本科毕业设计(论文)7第第 2 2 章章 双搅拌轴搅拌摩擦焊机设计双搅拌轴搅拌摩擦焊机设计本章讲述双搅拌轴搅拌摩擦焊焊机的重要部分的设计计算过程。主要包括以下几方面:焊机的总体设计、搅拌系统的设计(主要讲双搅拌轴的设计以及搅拌系统的传动系统) 、伺服系统的设计(主要为工作台的设计) 。此搅拌摩擦焊焊机,搅拌摩擦头转速约 6000r/min,焊接速度 500600mm/min,最大加工焊缝厚度 15mm,焊缝长度 500mm,总功率约 4000 瓦左右。此机器主要使用于普通的铝及其合金,该焊机由于是双轴的,可以双件同时加工,大大提高了生产效率。2.1 焊机的总体设计以及规划此双搅拌轴摩擦焊缝焊机由于为双轴,所以采取双件生产。为了使得该机器更加经济使用,所以采用一般的 A3 钢焊接结构。以下是此焊机的一些整体结构的规划,首先工作台平面约离地面高越 1300mm,焊机总高度约 1750mm(适合于工作人员的操作)总长度约 1400mm,工作台面长度约 1000mm,宽度约800mm,工作台上下移动约 80mm。机头高度约为 200mm,搅拌轴中心距机体约500mm。工作台箱体总长约 1000mm,高度约 400mm。考虑到及其的中提美观,将伺服系统的传动部分放入工作台的箱体内。同理,液压推动系统也将放于工作台的箱体内,便于液压推动过程中将工作台垂直向上推动。为了便于该系统的维修和检测,在起前方开一个天窗便于维修时的操作。电气控制部分将放于及其的左后下方(此部分不再本次设计范围内) 。搅拌系统的电机放在电机座上,然后再将电机座固定在机体上,调整电机座在机体上的位置就可以调整 V 带轮中心距。为了方便观察,在集体后方开一个观察窗口,便于机器的维修和检测。工作台箱体正面的左方将放置一个控制台,操作起来很方便。以上便是本台机器的整体布局的规划。 双搅拌轴搅拌摩擦焊机设计8 2.2 各部件设计.1 搅拌头及夹具设计搅拌头是搅拌摩擦焊技术的关键,由特殊形状的搅拌焊针和轴肩组成,轴肩直径大于搅拌焊针直径。搅拌焊针用具有良好耐高温力学和物理特性的抗摩损材料制造,并进行表面处理。对于不同厚度的板所用的搅拌摩擦头不同,方便搅拌头的更换,夹持部分采用螺纹联接,夹持部分为 M12,长度为 L=15mm,焊针直径 D=310mm,焊针做成特殊的螺旋状,加大了焊针与工件的接触面积,同时也有利于被焊金属的搅动,如图 2-1 所示。轴肩半径为焊针直径的三倍17,肩部直径为 D=930mm,轴肩采用如图 2-2 所示的图案,有利于轴肩与塑化材料紧密地结合在一起,这样也提高了轴肩与焊件表面的接触面积,同时也提高了焊接时的闭合性,从而可以防止塑化的材料在搅拌头旋转时喷射出去。各型号搅拌摩擦头的参数见表 2-1。 图图 2-12-1 焊针示意图焊针示意图图图 2-22-2 轴肩示意图轴肩示意图表表 2-12-1 搅拌摩擦头参数及焊缝截面积搅拌摩擦头参数及焊缝截面积板厚(mm)焊针直径(mm)焊针长度(mm)轴肩直径d(mm)角度(度)焊缝断面积mm215814248240106918612055451545033289218浙江理工大学本科毕业设计(论文)9搅拌头夹具用于联接搅拌头和搅拌轴,其具体结构如图 2-3 所示。图图 2-32-3 搅拌头夹具搅拌头夹具2.2.2 搅拌系统功率计算查资料得到铝合金在焊接时的需要的最高温升为 600,本机器主要设计成适合于 15mm 一下的,焊缝截面积约为 240mm2,焊速约为 500mm/min,由于热传递和热量损失,设能量利用率约为 50%,则单位时间内焊缝温升部分体积为:2x240x500=240000mm3 (由于本机器为双轴,则需要将截面面积加倍) ,能量计算公式为18 (2-1)VTCE式中:C比热容(J/kgK)T温度变化值()V体积(m3)密度(kg/m3)效率E能量(J)查得铝的各项参数如下23=2700Kg/m3,C=904.3J/KgK由式(2-1)单位时间内需要能量为min/895.87%502700102400006003 .9049KJE由于该机器为双轴,则功率为:KWP9 . 260895.872选用伺服电机 SM-150-230-20LFB(额定转速 2000r/min,长度 L=60mm,额定扭矩 2.3NB)双搅拌轴搅拌摩擦焊机设计10搅拌摩擦焊焊机输入工件的总功率为16 (2-2))(45)(10211020rrrrrrFnN式中:N输入工件总的热功率(J)n搅拌摩擦头的转速(r/min) 摩擦系数 F工件上压力(N) r0、r1焊头轴肩和焊针的半径(mm)因为单位时间内输入工件的能量与总功率相等,在单位时间内则有 (2-3)NE 查得铝与钢的摩擦系数为 0.1718 ,由式(2-2) 、 (2-3)得)1424(45)24241414(87895222FnF=84.7N则两个搅拌头向前移动阻力为NNF4 .14阻由此可以得出对于不同板厚的材料在焊接时的压力和焊接速度,见表 2-2。表表 2-22-2 不同板厚在焊接时的压力和焊速不同板厚在焊接时的压力和焊速板厚 mm焊缝截面积 mm2压力 N焊速 mm/min1524084.75001012084.710005506015003186020002.2.3 搅拌系统传动齿轮设计传递功率,转速, (为了方便设计和选材,把双KWP9 . 2min/6000rn 搅拌头的传动齿轮设计成传动比为 1 的三个齿轮),则齿数比。1齿i1u浙江理工大学本科毕业设计(论文)111 1选择齿轮材料选择齿轮材料 为了便于制造,采用软齿面齿轮,查表得,大齿轮采用 45 钢正火处理,170210HBS,小齿轮采用 45 钢调质处理,217255HBS。2 2按齿面接触强度设计按齿面接触强度设计一对钢制外啮合齿轮设计公式为 (2-4))(1)671(3121mmKTuuddH(1)计算小齿轮传递的转矩)(461560009 . 21055. 91055. 96116mmNnPT(2)选择齿轮齿数,则实际传动比为80z1齿i传动比误差为0%100111i(3)转速不高,功率不大,选择齿轮精度为 8 级(4)载荷平稳,对称布局,轴的钢度较大,查表 2-4 取 K=1.5表表 2-42-4 载荷综合系数载荷综合系数 K K工作机均匀平稳轻微振动中等振动结构布局对称非对称对称非对称对称非对称均匀平稳轻微振动1.7原动机中等振动表表 2-52-5 齿宽系数齿宽系数齿面硬度齿轮相对于轴承的位置软齿面硬齿面对称0.9非对称布置0.6(5)查表 2-5 取齿宽系数1d双搅拌轴搅拌摩擦焊机设计12(6)确定许用接触应力查得 2/380minmmNH查表 2-6 得25. 1minHS表表 2-62-6 最小安全系数最小安全系数 S SHminHmin和和 S SHminHmin齿轮传动装置的重要性SHminSHmin一般11齿轮损坏会引起严重后果1.251.5对于长期工作的齿轮,H可按下式计算 (2-5)minminHHHS由式(2-5)得 2/30425. 1380mmNH(7)计算齿轮分度圆直径由式(2-4)得mmd268.38146155 . 1111)368671(32(8)计算模数6 . 080268.38zdm查表 2-7 取 m=1.5。表表 2-72-7 渐开线圆柱齿轮标准模数(渐开线圆柱齿轮标准模数(GB1357GB13578787) mmmm第一系列0.1 0.12 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1 1.251.5 2 2.5 3 4 5 6 8 10 12 16 20 25 32 40 50第二系列0.35 0.7 0.9 1.75 2.25 2.75 3.5 4.5 5.5 7 9 14 18浙江理工大学本科毕业设计(论文)13(9)计算齿轮主要尺寸及圆周速度表表 2-82-8 传递动力的齿轮精度(传递动力的齿轮精度(公差组)等级的选择与应用公差组)等级的选择与应用圆周速度(m/s)圆柱齿轮锥齿轮精度等级直齿斜齿直齿斜齿应用6 级15301220高速重载齿轮传动7 级1015810高速中载或中速重载的齿轮传动8 级61047一般机械中对精度无特殊要求的齿轮9 级241.53低速或对精度要求低的齿轮不妨取分度圆半径 d=48mmZ=D/m=96/1.5=64 中心距mmzzma96)6464(25 . 1)(221齿轮宽度mmdb48481圆周速度smdnV/07.14100060600048100060查表 2-8 可知能用 6 级精并选用 1 号二硫化钼锂基脂进行润滑。3 3校核齿根弯曲强度校核齿根弯曲强度校核齿根弯曲强度用以下公式 (2-6)/22121mmNzbmYKTFFsF(1)复合齿形系数根据由表 2-5 查得21,zz0 . 41FsY(2)确定许用应力F。对于长期单面工作的齿轮,其齿根受脉动循环弯曲应力,此时可按下F式计算双搅拌轴搅拌摩擦焊机设计14 (2-7)minminFFFS由图 1-7 查得21min/530mmNF查表 2-6 得,由式(2-7)得5 . 1minFS mmNF/33.3535 . 1530(3)式中已知 ,5 . 1KmmNT 46155 . 1mmmb48(4)校核计算。由式(2-6)得222/33.353/012. 8645 . 1480 . 446155 . 12mmNmmNFF校核计算安全。4 4结构设计结构设计齿轮按照表 2-9 进行设计。初步取 d=30mm,利用轴肩作轴向固定,8X22 的键作周向固定。查表 2-10 得,键 t=4.0mm,t1=3.3mm。n1取 1mm。表表 2-92-9 圆柱齿轮结构及尺寸圆柱齿轮结构及尺寸dd6 . 11Bdl)5 . 12 . 1 (namzd)2( nfmzd)5 . 2( namdD101)(5 . 0110dDD)(10)(25. 00110较小时可不钻孔dmmdDd浙江理工大学本科毕业设计(论文)15表表 2-102-10 平键平键 轴 d键 bxh公称尺寸轴 t毂 t1682x221.218103x331.81.410124x442.51.812175x553.02.317226x663.52.822308x784.03.3303810x8105.03.3384412x8125.03.3445014x9145.53.8键长系列:6,8,10,12,14,16,18,20,22,25,28,32,36,40,45,50,56,63,70,80,90,100,110,125,140,160,180,得:模数 m=1.5;分度圆半径 d=48mm;齿顶圆直径ad=99mm;齿根圆直径fd=92.25mm;齿数 z=64。2.2.4 搅拌轴的设计1 1选择轴的材料选择轴的材料搅拌摩擦焊机的功率 P=2.99KW,由于功率不大又无特殊要求,故搅拌轴可选用常用的 45 号钢并作正火处理。查得。2/600mmNB对于一般的传动轴,可按下式计算轴的最直径双搅拌轴搅拌摩擦焊机设计16 (2-8))( 2 . 01055. 93336mmnPCnPd查表 2-12 得 C=118-107,由式(2-8)得)(26. 960009 . 21183mmd计算所得是最小处的轴径,不妨取 d=20mm,前端留出 M20X20 于搅拌头的夹具相连,后端也留出 M20X20,用于做轴向固定。表表 2-112-11 按转矩计算轴用的按转矩计算轴用的tt和和 C C 值值轴的材料Q23535,Q2754540Cr,35SiMnt N/mm212-2020-3030-4040-52C160-135135-118118-107107-982 2轴的结构设计轴的结构设计图图 2-42-4 搅拌轴示意图搅拌轴示意图d1=20mm,L1=20mm,此处用于轴的轴向固定选用 M20 螺母(GB6170-86) ,并加弹簧垫片(GB93-87) 。d2=25mm,L2=40mm,由于该轴的转速为 6000r/min,30205 圆锥滚子轴承在脂润滑的情况下极限转速为 7000r/min,符合要求,故选择 30205 的圆锥滚子轴承。具体数据参考表格 2-12。浙江理工大学本科毕业设计(论文)17表表 2-122-12 圆锥滚子轴承(圆锥滚子轴承(GB/T297GB/T29719941994)尺寸/mm极限转速r/min轴承代号dDTBC脂润滑油润滑30203174013.25121190001200030204204715.25141280001000030205255216.2515137000900030206306217.2516146000750030207357218.2517155300670030208408019.25181650006300d3=30mm, L3=46mm,用于安装齿轮,此处开一个 8X32,t=4.0,ti=3.3 的键槽d4=36mm, L4=6mm,用于齿轮的轴向固定d5=32mm, L5=72mmd6=25mm,L6=16mm,用于安装 30205 轴承d7=20mm,L7=20mm,用于安装搅拌头夹具轴的总长为 220mm30206 轴承用 1 号二硫化钼锂基脂进行润滑,由表 1-13 查得,符合6000r/min 转速的要求。3 3轴上受力分析轴上受力分析齿轮对轴的作用力为,搅拌摩擦头对轴的作用力NFQ02.216204.433为,轴向力,则:NF4 .14阻NFFa7 .84水平面 HHHRRFRF21169111阻阻双搅拌轴搅拌摩擦焊机设计18解得 NRNRHH56.2716.2321垂直面 VVQVQRRFRF1226940解得 NRNRVV23.12525.34121则 NRRRNRRRVHVH23.12823.12556.2734225.34116.2322222222221211表表 2-132-13 圆锥滚子轴承的基本额定动载荷圆锥滚子轴承的基本额定动载荷 C C 和基本额定静载荷和基本额定静载荷 C C0 0 KNKN轴承型号CC0eYY0X3020425.018.00.351.71.03020530.023.00.371.60.93020639.029.50.371.60.93020749.037.00.371.60.93020855.041.50.371.60.93020959.046.00.401.50.83021066.053.50.40查表 2-13 得 e=0.37,Y=1.6,X=0.40表表 2-142-14 角接触型轴承派生轴向力角接触型轴承派生轴向力 S S角接触球轴承C 型(=150)AC 型(=250)B 型(=400)圆锥滚子轴承S=eRS=0.68RS=1.14RS=R/(2Y)由表 2-14 得NYRSNYRS07.40287.10621211浙江理工大学本科毕业设计(论文)19NSNFSa07.4017.2221NN07.4017.22,轴有沿方向移动的趋势,轴承 1 被“压紧” ,轴承 2 被21SFSa2S“放松” ,由平衡条件可得作用在轴承 1 和 1 上的轴向载荷分别为NSANFSAa07.4077.1247 .8407.402221 因轴承上的作用力大于轴承上的作用力,故仅对轴承进行寿命计算,轴承寿命可由下式进行计算 (2-9))()(6010610hPCnLh (2-10))(YAXRKPP表表 2-152-15 动载荷系数动载荷系数 K KP P载荷性质平稳或有轻微冲击中等冲击和振动强烈冲击和振动KP1.01.83.0查表 2-15 得,由式(2-10)得2 . 1PKNP36.410)33.1286 . 134240. 0(2 . 1查表 1-14 得 C=39.0KN,由式(2-9)得hLh4538213)36.41030000(600060103106104 4计算弯矩计算弯矩水平面弯矩截面 b: )(4 .15984 .14111111mmNFMbH阻垂直面弯矩截面 a: )(8 .864002.2166840mmNFMQaV5 5计算扭矩计算扭矩双搅拌轴搅拌摩擦焊机设计20表表 2-162-16 轴的许用弯曲应力轴的许用弯曲应力 N/mmN/mm2 2材料S+1b0b-1b400130704050017075456002009555碳素钢7002301106580027013075合金钢100033015090)(461560009 . 21055. 91055. 966mmNnPT又根据 B=600N/mm2,查表 2-16 得-1b=55N/mm2, 0b=95N/mm2,故58. 09555)(2677461558. 0mmNT6 6计算当量弯矩计算当量弯矩截面 a:)(88.3117)(22mmNTMMaae截面 b:)(39.9775)(22mmNTMMbbe7 7分别计算分别计算 a a 和和 b b 处的直径处的直径mmMdbaea27. 8551 . 03117 1 . 0331mmMdbIeb11.12551 . 039.9775 1 . 0331结构设计确定的直径为 20mm,截面 b 处为螺纹联接没有削弱,所以,此轴强度足够,符合设计要求。2.2.5 搅拌系统 V 带设计 带轮传递的功率:p=2.9kw,转速约为 6000r/min,满足传动比为 i=3, (由浙江理工大学本科毕业设计(论文)21于电机的额定转速为 2000r/min)1 1选择选择 V V 带型号带型号计算功率 PC由下式确定 (2-11)PKPAC式中:KA工作情况系数 P需要传递的名义功率(KW)查表 2-3 得工作情况系数,由式(2-17)计算得1 . 1AKKWPC19. 39 . 21 . 1根据 PC和 n 由图 1-9 选用 Z 型 V 带。2 2确定带轮基准直径确定带轮基准直径 d dd1d1、d dd2d2已知 (2-12)12did (2-13)01201180180add (2-14)addddaL4)()(2221221图图 2-52-5 带传动示意图带传动示意图小带轮直径 dd1宜选大些,可减小带的弯曲应力,有利于延长带的寿命;在传递的转矩一定时,dd1选大一些可降低带工作时的圆周力,从而可以减少带的根数。通常小轮直径 dd1应大于或等于最小基准直径dmin。若dd1过大,传动的外双搅拌轴搅拌摩擦焊机设计22廓也将增大。由表 1-18 选择小轮直径为 dd1=60mm, 由式(2-12)得mmdiddd18060312表表 2-172-17 V V 带轮最小基准直径带轮最小基准直径 d dminmin及基准直径系列及基准直径系列 mmmmV 带轮槽型YZABCDEdmin205075125200355500基准直径系列20 22.4 25 28 31.5 35.5 40 45 50 60 63 71 75 80 8590 95 100 106 112 118 125 132 140 150 160 170 180 200 212 224 236 250 265 280 315 355 375 由表 2-17 选择 dd2=180mm实际传动比 360180i实际转速 min/6000320002rn传动比偏差 ,小于 5%,符合条件。03 3验算带速验算带速 V V0 0带速太高,带的离心力很大,使带的离心应力增大,并使带与轮之间的压紧力减小,摩擦力随之减小,从而使传动能力下降;带速过低,传递相同功率时带所传递的圆周力增大,需要增加带的根数。一般应使带速 V 在 525m/s 范围内工作,尤以 V=1020m/s 为宜。带速由下式确定 (2-15)10006022ndVd由式(2-15)得smndVd/1810006060006010006022带速在 525m/s 范围内,符合要求。4.4.确定中心距确定中心距 a a,V V 带基准长度带基准长度 L Ld d(1)初选中心距 a0。设计时对中心距有一定的要求,即大于 400mm,根据得,初选 a0为 450mm,符合取值)(2)(7 . 021021ddddddadd4801680 a范围。浙江理工大学本科毕业设计(论文)23(2)计算初定的带长 Ld。 。由式(2-7)得)(8 .8844)()(2202122100mmaddddaLddddd(3)基准带长 Ld。由表 2-18 选用 Ld=1400mm, KL=1.14表表 2-182-18 普通普通 Z Z 型型 V V 带基准长度带基准长度 L Ld d系列及长度系数系列及长度系数 K KL LLd400450500560630710800KL0.870.890.910.940.960.991.00Ld900100011201250140016001800KL1.031.061.061.18(4)实际中心距 a。实际中心距由下式确定 (2-16)200ddLLaa由式(2-16)得)(6 .50728 .12841400450mma考虑安装和张紧 V 带的需要,留出50mm 作为中心距距调整量,不妨取550mm。5 5核算小轮上包角核算小轮上包角 1 1由式(2-14)得00012011207 .164180180adddd6 6确定确定 V V 带根数带根数 z z (2-17)LACKKPPPKPPz)(000 (2-18))11 (2ibKnKP表表 2-192-19 传动比系数传动比系数 K Ki i传动比 i1.00-1.041.05-1.191.20-1.491.50-2.952.95Ki1.001.031.081.121.14表表 2-202-20 弯曲影响系数弯曲影响系数 K Kb b双搅拌轴搅拌摩擦焊机设计24普通 V 带型号YZABCDEKb(10-3)0.060.391.032.657.5026.649.8根据 n1和 n2得,查表 1-20 得 Ki=1.14,查表 1-21 得KWP48. 00Kb=0.39x10-3,由式(1-17)得KWP288. 0)14. 111 (60001039. 03表表 2-212-21 包角系数包角系数小轮包角118001750170016501600155015001450K1.000.990.980.960.950.930.920.91查表 2-8 得 K=0.93,由式(2-17)得79. 314. 196. 0)288. 048. 0(19. 3z选用 Z 型 V 带 4 根。7 7确定带的预拉力确定带的预拉力 F F预拉力是保证带传动正常工作和重要条件。预拉力不足,极限摩擦力减小,传动能力下降;预拉力过大,又会使带的寿命降低,轴和轴承的压力增大。表表 2-222-22 普通普通 V V 带的规格带的规格型号YZABCDE每米带长质量q(Kg/m)0.040.000.600.87查表 2-22 得 Z 型 V 带的质量为mKgq/06. 0单根普通 V 带合适的预拉力由下式确定 (2-19)20) 15 . 2(500qvKzvPFC由式(2-19)得NF98.541806. 0) 196. 05 . 2(18419. 350020浙江理工大学本科毕业设计(论文)258 8计算带传动作用在轴上的力计算带传动作用在轴上的力 (2-20)2sin210zFFQ为设计安装带轮的轴和轴承,必须确定带传动作用在带轮轴上的力 FQ。由式(2-20)得NFQ04.43327 .164sin98.544209带轮结构设计带轮结构设计(1)大 V 带轮设计图图 2-62-6 大带轮示意图大带轮示意图大 V 带轮结构按照图 2-6 进行设计。用 M6X16 的紧定螺钉与电机输出轴作轴向固定,8X50 的键作周向固定。查表 1-25 得,键 t=4.0mm,t1=3.3mm。C 取1mm。mmDd30mmddd60,604830)28 . 1 ()28 . 1 (11取mmfeZB528212) 14(2) 1(mmLdL60,604530)25 . 1 ()25 . 1 (取mmhddada184221802mmhddca154)5 . 55 . 9(2184)(22mmsBs12, 6 .154 .1052)3 . 02 . 0()3 . 02 . 0(取双搅拌轴搅拌摩擦焊机设计26mmdddk1072154602)(21具体尺寸见零件图。(2)小 V 带轮设计图图 2-72-7 小小 V V 带轮的结构及尺寸带轮的结构及尺寸小 V 带轮结构按照图 2-7 再结合表 2-23 进行设计。用中间轴作轴向固定, 6X32 的键作周向固定。查表 2-24 得,键的 t=3.5mm,t1=2.8mm,C 取 1mm。mmd20mmfeZB528212) 14(2) 1(mmLdL70,806040)25 . 1 (1)25 . 1 (取mmhddada6422602具体尺寸见零件图。2.2.6X-Y 工作台设计X-Y 平台外形尺寸及重量估算Y 向拖板(上拖板)尺寸:长宽高:60050040重量:按重量体积材料比重估算;N32310566. 1108 . 71040500600X 向拖板(下拖板)尺寸:80080040浙江理工大学本科毕业设计(论文)27重量:N32310996. 1108 . 71040800800导轨及滑块重量查表得:约 60N;夹具及工件重量:约 200N;步进电动机:15.8N;底座:140090040重量 3.93N;310X-Y 平台总重量:约 3993.6N。搅拌头向下的压力及行走抗力:压力 P 压=84.7N,行走抗力14.4N。 (以焊接 15mm 铝板为准)FP 根据相关数据选取 BRS25B-L100 的导轨,如图 2-8 所示 图图 2-8 导轨与滑块示意图导轨与滑块示意图2.2.7 传动丝杠设计搅拌头对工件的压力为 87.4N,故工作台面向下的总压力为NF3 .40784 .876 .3993压钢与钢在有润滑剂时的摩擦系数20f=0.050.1,得工作台与工作面板间的滑动摩擦力为NFfF8 .4073 .40781 . 0压摩由于发生热塑性变形的金属对搅拌头的也有一定阻力,同时为了防止工作双搅拌轴搅拌摩擦焊机设计28台面锁死不动,故将伺服系统的推力增加一点,即可提供 500N 左右的力。工作台移动的最大速度约为 600mm/min,因此,丝杠传动系统传递的功率为WVFP300106005003查得丝杠传动的效率为6 . 03 . 0因此,伺服电机的功率约为WPP10005006 . 03 . 03006 . 03 . 0伺选用 SM130-100-15-LFB 伺服电机(最大转速:1500r/min,额定功率1kw)初选传动丝杠的梯形螺纹螺距为 2mm,则丝杠最大转速,减速机构的减速比为:min/3002600rn丝53001500i传动比为 5i丝杠传动的输出功率为 500W 左右,输入功率为 1000W 左右,传动效率0.5,因工作台平时正常运动所需的功率不到 400W,即使丝杠传动效率有所下降,工作台也能照样正常运行。工作台箱体内腔长度为 600mm,丝杠传动功率不大,转速低,且受径向力很小(仅齿轮对轴有径向作用力) ,用 1 号二硫化钼锂基脂对丝杠进行润滑。丝杠两端选用 6205 轴承,6205 轴承用 1 号二硫化钼锂基脂进行润滑。查表 1-13得 6205 轴承的宽度为 15mm,丝杠两端为 2X450的倒角,因此,丝杠总长为L=700mm。1 1选择丝杠材料选择丝杠材料此伺服系统的功率不大,故选用常用的 45 号钢并作正火处理。2 2确定丝杠的最小直径确定丝杠的最小直径 查表得系数2,1,寿命值 L=PffLQHw3wfHf61060nT查表得使用寿命时间 T1500h,初选丝杠螺距 t=5mm,的丝杠转速浙江理工大学本科毕业设计(论文)29min)/(30026 . 010001000maxrtVn3 3所以 L27101500300606 查表得2,1wfHfY 向丝杠牵引力w93.3018 .19961 . 044. 14 .14Gy44. 11当fPyPyX 向丝杠牵引力:w48.5896 .39931 . 044. 14 .14Gx44. 11当fPxPx所以最大动负荷Y 向N58.181193.30112273QyX 向N88.353648.58912273Qx对于一般的传动丝杠,可按下式计算其最直径 (2-21))(2mmPQd式中:Q轴向载荷(N) d2螺纹中径(mm) P许用压强(N/mm2) ,2/dHph/为使受力分布比较均匀,螺纹工作圈数不宜太多,一般取,梯5 . 22 . 1形螺纹。已知,取P=4 N/mm2,由式(2-21)得5 . 0NQ200max mmd69.1345 . 15 . 088.35362mmdH54.2069.135 . 15 . 12丝杠两端用的 6206 轴承,为方便安装,故取丝杠螺纹大径为 d=38mm双搅拌轴搅拌摩擦焊机设计30图图 2-92-9 丝杠示意图丝杠示意图 d1=30mm,L1=18mm,用于安装 6206 轴承,查得 6205 轴承宽度为 16mm;d2=36mm,L2=6mm,符合 6206 轴承的安装要求;d3=38mm, L3=620mm,丝杠的梯形螺纹;d4=30mm, L4=30mm,用于安装减速大齿轮,用平建 822 做轴向固定;d5=22mm, L5=30mm,用于安装 6205 轴承,用作轴承轴向定位。2.2.8 减速齿轮的设计传递功率,转速,则齿数比。KWP7 . 0min/1500rn 5齿i5u1 1选择齿轮材料选择齿轮材料为了便于制造,采用软齿面齿轮,查表 1-3 得,大齿轮采用 45 钢正火处理,170210HBS,小齿轮采用 45 钢调质处理,217255HBS。2 2按齿面接触强度设计按齿面接触强度设计一对钢制外啮合齿轮设计公式为 (2-22))(1)671(3121mmKTuuddH(1)计算小齿轮传递的转矩。 (电机的平均传动功率为 700w))(67.445615007 . 01055. 91055. 96116mmNnPT(2)选择小齿轮齿数,则实际传动比为19z5齿i浙江理工大学本科毕业设计(论文)31传动比误差为0%100555i(3)转速不高,功率不大,选择齿轮精度为 8 级。(4)载荷平稳,对称布局,轴的钢度较大,查表 1-4 取 K=1.5。(5)查得齿宽系数。1d(6)确定许用接触应力查得 2/380minmmNH查得25. 1minHS对于长期工作的齿轮,H可按下式计算 (2-23)minminHHHS由式(2-23)得 2/30425. 1380mmNH(7)计算齿轮分度圆直径。由式(2-22)得mmd18.32167.44565 . 1555)368671(32(8)计算模数。7 . 11932zdm查表 2-23 取 m=2。表表 2-232-23 渐开线圆柱齿轮标准模数(渐开线圆柱齿轮标准模数(GB1357GB13578787) mmmm第一系列0.1 0.12 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1 1.251.5 2 2.5 3 4 5 6 8 10 12 16 20 25 32 40 50第二系列0.35 0.7 0.9 1.75 2.25 2.75 3.5 4.5 5.5 7 9 14 18(9)计算齿轮主要尺寸及圆周速度。双搅拌轴搅拌摩擦焊机设计32表表 2-242-24 传递动力的齿轮精度(传递动力的齿轮精度(公差组)等级的选择与应用公差组)等级的选择与应用圆周速度(m/s)圆柱齿轮锥齿轮精度等级直齿斜齿直齿斜齿应用6 级15301220高速重载齿轮传动7 级1015810高速中载或中速重载的齿轮传动8 级61047一般机械中对精度无特殊要求的齿轮9 级241.53低速或对精度要求低的齿轮 分度圆直径 mmmzd3821911mmmzd19029522中心距mmzzma114)9519(22)(221齿轮宽度,取 mmdb4 .30388 . 01mmbmmb32,3621 圆周速度smdnV/984. 2100060150038100060查表 2-24 可知能用 8 级精并选用 1 号二
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:双搅拌轴搅拌摩擦焊焊机设计【带PROE三维】【23张图纸】【优秀】
链接地址:https://www.renrendoc.com/p-272275.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!