立题审批表.doc

拖拉机液压悬挂系统自动控制系统研究【电子类】【6张图纸】

收藏

压缩包内文档预览:
预览图
编号:272302    类型:共享资源    大小:4.23MB    格式:RAR    上传时间:2014-04-13 上传人:上*** IP属地:江苏
50
积分
关 键 词:
拖拉机 液压 悬挂 吊挂 系统 自动控制系统 研究 钻研 子类 图纸
资源描述:

拖拉机液压悬挂系统自动控制系统研究

36页 20000字数+说明书+任务书+答辩稿PPT+6张CAD图纸【详情如下】

liweitiaojiexinhaochuandi.dwg

yuantu.dwg

zuizong.dwg

zuizong1.dwg

任务书.doc

回路.dwg

图纸总汇.dwg

封皮.doc

拖拉机液压悬挂系统自动控制系统研究答辩稿.ppt

拖拉机液压悬挂系统自动控制系统研究说明书.doc

摘要.doc

目录.doc

立题审批表.doc

设计文档备份.rar


目 录

1 绪 论-1-

1.1引言-1-

1.2研究背景和意义-1-

1.2.1研究背景-1-

1.2.2研究意义-1-

1.3国内外研究现状分析-3-

1.3.1国外研究现状-3-

1.3.2国内研究现状-4-

1.4研究内容-5-

1.5本章小结-7-

2 拖拉机电控液压悬挂系统设计-8-

2.1传统拖拉机的液压悬挂系统-8-

2.1.1液压悬挂系统组成-8-

2.1.2液压系统类型-9-

2.2 电控液压悬挂系统设计-10-

2.2.1设计方案的提出-10-

2.2.2设计方案的确定-14-

2.3 工作机理-14-

2.4 本章小结-15-

3 液压回路设计和信号处理电路设计-16-

3.1液压回路设计和硬件选型-16-

3.1.1电控液压系统回路设计-16-

3.1.2液压泵和分配器的选择-17-

3.1.3小油缸的选型-17-

3.1.4换向阀的选择-18-

3.1.5减压阀和溢流阀的选择-18-

3.2信号处理电路设计-19-

3.2.1传感器的选择-19-

3.2.2传感器信号放大电路和滤波电路设计-22-

3.2.3光电耦合器和三极管放大电路设计-23-

3.3控制回路设计-23-

3.3.1 ECU特点-23-

3.3.2 80C196KC系统设计-24-

3.4本章小结-25-

4 电控液压悬挂系统软件设计-27-

4.1主程序设计-27-

4.2 A/D转换中断程序设计-27-

4.3本章小结-29-

结论及展望-30-

参考文献-31-


附录1-33-

附录2-34-

附录3-38-

致  谢-41-




拖拉机液压悬挂系统自动控制研究

摘  要


   随着新兴科学技术的不断创新,尤其是计算机技术、电子控制、人工智能、网络通讯等高新技术的迅速发展,对拖拉机工业的发展产生了很大的影响和渗透。而采用机—电—液一体化控制技术是拓宽拖拉机功能、提高其技术性能以及解决其所面临诸多技术难题的最佳选择方案,并且已经成为现代拖拉机及其配套机组的主要技术发展趋势。

   本文首先介绍了传统拖拉机液压悬挂系统的组成和类型。在此基础上,选择了拖拉机半分置式液压悬系统进行设计,设计新型拖拉机电控液压悬挂系统。在原拖拉机半分置式液压悬挂机构中改进设计了自动控制系统。分别阐述了自动控制系统的组成、工作原理、土壤阻力传感器、农具提升高度传感器、主控制阀位移传感器信号的测取与处理以及单片机控制的实现。在液压油路方面,该系统用电磁换向阀控制分配器取代传统机械式的控制分配器,并设计配套油路;在控制反馈信号获取方面,系统中安装位移传感器、压力传感器和角位移传感器;同时,对拖拉机电子液压悬挂的各种耕深控制方法进行比较分析。

   拖拉机电控液压悬挂控制单元设计包括硬件和软件设计.根据本系统各功能模块的具体需求,选用Intel公司MSC-96系列的80C196KC单片机设计控制器。在软件方面,完成了主程序控制程序总体流向。


   关键词:拖拉机;液压悬挂系统;换向阀;自动控制


   我国当前拖拉机作业机组的生产和实际应用而言,对机—电—液一体化控制技术的研究工作还处于起步阶段,对一些关键性技术问题尚缺芝系统和深入的研究,没有形成可行的解决方案。液压技术在拖拉机作业机组中的应用,仍然处于以液压悬挂的推广完善为代表的液压悬挂阶段,并且更多的研究都是针对传统机液控制系统的仿真拖拉机电子液压悬挂控制器设计和控制技术研究和实验研究,还未进入实际应用阶段[10、11、12]。

1.4 研究内容

 鉴于我国拖拉机工业的发展水平和所面临的实际问题,本项研究拟选择拖拉机液压悬挂系统自动控制系统,主要是液压悬挂装置及其自动控制,作为主要研究对象。研究、探讨其在实现机—电—液一体化控制方面的关键技术,提出一套关于拖拉机液压悬挂装置及其自动控制机—电—液一体化控制系统的基本方案和理论,研究液压系统的优化匹配方法,最终设计开发新型拖拉机机—电—液一体化控制器系统,使拖拉机作业机组能够在复杂多变的工作条件下自动化控制工作,最大限度提高整个拖拉机作业机组的工作效能。该研究具有很大的实际应用价值和研究意义,必将对我国的农业生产活动产生显著的经济效益和社会效益。本研究以约翰-迪尔天托1204为研究对象,主要研究其液压悬挂系统的自动控制。

   本课题主要完成的内容有:

   1、拖拉机液压悬挂控制方法分析

   2、液压系统的改造,传感器选型和安装

   3、液压悬挂控制策略选择及研究

   4、液压悬挂系统电液控制的设计和研制


内容简介:
附表2:(指导教师和学生用)西北农林科技大学本科生毕业论文(设计)任务书学院(系): 机电学院 专业班级: 机制083 学生: 申林 学号: 08108063 论文(设计)题目拖拉机液压悬挂系统自动控制系统研究指导教师陈军职称教授从事专业农业机械化研究目标及内容:(不少于300字)通过拖拉机液压悬挂系统自动控制系统研究,进一步阐述了自动控制系统的组成、工作原理、土壤阻力传感器、农具提升高度传感器、主控制阀位移传感器信号的测取与处理以及单片机控制的实现。控制系统试验,表明拖拉机液压悬挂系统的自动控制是有效的。同时将农业机械装备技术融合现代液压技术、传感器技术、微电子技术和单片机控制技术,可极大地提高液压悬挂系统操作的舒适性和简捷性,准确、快速地使用和调节液压悬挂系统,可提高生产率和作业质量。内容:液压悬挂机构 换向阀 传感器 油缸 自动控制 等内容。液压悬挂系统:由原液压悬挂系统的油泵、分配器、液压油缸、提升臂、拉杆和弹簧等组成。主要完成液压油路的控制,以完成农具的提升、中立、下降过程 。控制系统:由电磁换向阀、减压阀、小油缸、控制面板等组成。主要完成控制信号的输入,并由三位四通电磁换向阀和小油缸,完成分配器主阀移动位置的控制信号检测与处理系统:由位移传感器、压力传感器、提升轴转角传感器、放大电路、CPU等组成,主要完成土壤阻力、农具提升高度和主阀位移量的信号检测与数据处理。基本要求:1.查阅文献不少于20篇,外文文献不少于5篇;2.完成设计说明书;3.完成系统仿真。进度安排序号预期论文(设计)进度起 止 日 期1论文前期准备2011.11.1-2011.11.152查找相关资料2011.11.16-2011.12.303论文起草2012.1.2-2012.4.14毕业论文整理2012.4.2-2012.5.155最后审核2012.5.16-2012.6.86毕业答辩2012.6.11-2012.6.127备注注:一式三份,院(系)、指导教师、学生各一份,由指导教师填写。毕业论文(设计)工作领导小组组长签字: 年 月 日附录2:Microcomputer SystemsElectronic systems are used for handing information in the most general sense; this information may be telephone conversation, instrument read or a companys accounts, but in each case the same main type of operation are involved: the processing, storage and transmission of information. in conventional electronic design these operations are combined at the function level; for example a counter, whether electronic or mechanical, stores the current and increments it by one as required. A system such as an electronic clock which employs counters has its storage and processing capabilities spread throughout the system because each counter is able to store and process numbers. Present day microprocessor based systems depart from this conventional approach by separating the three functions of processing, storage, and transmission into different section of the system. This partitioning into three main functions was devised by Von Neumann during the 1940s, and was not conceived especially for microcomputers. Almost every computer ever made has been designed with this structure, and despite the enormous range in their physical forms, they have all been of essentially the same basic design. In a microprocessor based system the processing will be performed in the microprocessor itself. The storage will be by means of memory circuits and the communication of information into and out of the system will be by means of special input/output(I/O) circuits. It would be impossible to identify a particular piece of hardware which performed the counting in a microprocessor based clock because the time would be stored in the memory and incremented at regular intervals but the microprocessor. However, the software which defined the systems behavior would contain sections that performed as counters. The apparently rather abstract approach to the architecture of the microprocessor and its associated circuits allows it to be very flexible in use, since the system is defined almost entirely software. The design process is largely one of software engineering, and the similar problems of construction and maintenance which occur in conventional engineering are encountered when producing software. The figure1.1 illustrates how these three sections within a microcomputer are connected in terms of the communication of information within the machine. The system is controlled by the microprocessor which supervises the transfer of information between itself and the memory and input/output sections. The external connections relate to the rest (that is, the non-computer part) of the engineering system. Fig.1.1 Three Sections of a Typical MicrocomputerAlthough only one storage section has been shown in the diagram, in practice two distinct types of memory RAM and ROM are used. In each case, the word memory is rather inappropriate since a computers memory is more like a filing cabinet in concept; information is stored in a set of numbered boxes and it is referenced by the serial number of the box in question. Microcomputers use RAM (Random Access Memory) into which data can be written and from which data can be read again when needed. This data can be read back from the memory in any sequence desired, and not necessarily the same order in which it was written, hence the expression random access memory. Another type of ROM (Read Only Memory) is used to hold fixed patterns of information which cannot be affected by the microprocessor; these patterns are not lost when power is removed and are normally used to hold the program which defines the behavior of a microprocessor based system. ROMs can be read like RAMs, but unlike RAMs they cannot be used to store variable information. Some ROMs have their data patterns put in during manufacture, while others are programmable by the user by means of special equipment and are called programmable ROMs. The widely used programmable ROMs are erasable by means of special ultraviolet lamps and are referred to as EPROMs, short for Erasable Programmable Read Only Memories. Other new types of device can be erased electrically without the need for ultraviolet light, which are called Electrically Erasable Programmable Read Only Memories, EEPROMs. The microprocessor processes data under the control of the program, controlling the flow of information to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor. The microprocessor processes data under the control of the program, controlling the flow of information to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor. The microprocessor , memory and input/output circuit may all be contained on the same integrated circuit provided that the application does not require too much program or data storage . This is usually the case in low-cost application such as the controllers used in microwave ovens and automatic washing machines . The use of single package allows considerable cost savings to e made when articles are manufactured in large quantities . As technology develops , more and more powerful processors and larger and larger amounts of memory are being incorporated into single chip microcomputers with resulting saving in assembly costs in the final products . For the foreseeable future , however , it will continue to be necessary to interconnect a number of integrated circuits to make a microcomputer whenever larger amounts of storage or input/output are required.Another major engineering application of microcomputers is in process control. Here the presence of the microcomputer is usually more apparent to the user because provision is normally made for programming the microcomputer for the particular application. In process control applications the benefits lf fitting the entire system on to single chip are usually outweighed by the high design cost involved, because this sort lf equipment is produced in smaller quantities. Moreover, process controllers are usually more complicated so that it is more difficult to make them as single integrated circuits. Two approaches are possible; the controller can be implemented as a general-purpose microcomputer rather like a more robust version lf a hobby computer, or as a packaged system, signed for replacing controllers based on older technologies such as electromagnetic relays. In the former case the system would probably be programmed in conventional programming languages such as the ones to9 be introduced later, while in the other case a special-purpose language might be used, for example one which allowed the function of the controller to be described in terms of relay interconnections, In either case programs can be stored in RAM, which allows them to be altered to suit changes in application, but this makes the overall system vulnerable to loss lf power unless batteries are used to ensure continuity of supply. Alternatively programs can be stored in ROM, in which case they virtually become part of the electronic hardware and are often referred to as firmware. More sophisticated process controllers require minicomputers for their implementation, although the use lf large scale integrated circuits the distinction between mini and microcomputers, Products and process controllers of various kinds represent the majority of present-day microcomputer applications, the exact figures depending on ones interpretation of the word product. Virtually all engineering and scientific uses of microcomputers can be assigned to one or other of these categories. But in the system we most study Pressure and Pressure Transmitters. Pressure arises when a force is applied over an area. Provided the force is one Newton and uniformly over the area of one square meters, the pressure has been designated one Pascal. Pressure is a universal processing condition. It is also a condition of life on the planet: we live at the bottom of an atmospheric ocean that extends upward for many miles. This mass of air has weight, and this weight pressing downward causes atmospheric pressure. Water, a fundamental necessity of life, is supplied to most of us under pressure. In the typical process plant, pressure influences boiling point temperatures, condensing point temperatures, process efficiency, costs, and other important factors. The measurement and control of pressure or lack of it-vacuum-in the typical process plant is critical.The working instruments in the plant usually include simple pressure gauges, precision recorders and indicators, and pneumatic and electronic pressure transmitters. A pressure transmitter makes a pressure measurement and generates either a pneumatic or electrical signal output that is proportional to the pressure being sensed.In the process plant, it is impractical to locate the control instruments out in the place near the process. It is also true that most measurements are not easily transmitted from some remote location. Pressure measurement is an exception, but if a high pressure of some dangerous chemical is to be indicated or recorded several hundred feet from the point of measurement, a hazard may be from the pressure or from the chemical carried.To eliminate this problem, a signal transmission system was developed. This system is usually either pneumatic or electrical. And control instruments in one location. This makes it practical for a minimum number of operators to run the plant efficiently.When a pneumatic transmission system is employed, the measurement signal is converted into pneumatic signal by the transmitter scaled from 0 to 100 percent of the measurement value. This transmitter is mounted close to the point of measurement in the process. The transmitter output-air pressure for a pneumatic transmitter-is piped to the recording or control instrument. The standard output range for a pneumatic transmitter is 20 to 100kPa, which is almost universally used.When an electronic pressure transmitter is used, the pressure is converted to electrical signal that may be current or voltage. Its standard range is from 4 to 20mA DC for current signal or from 1 to 5V DC for voltage signal. Nowadays, another type of electrical signal, which is becoming common, is the digital or discrete signal. The use of instruments and control systems based on computer or forcing increased use of this type of signal.Sometimes it is important for analysis to obtain the parameters that describe the sensor/transmitter behavior. The gain is fairly simple to obtain once the span is known. Consider an electronic pressure transmitter with a range of 0600kPa.The gain is: defined as the change in output divided by the change in input. In this case, the output is electrical signal (420mA DC) and the input is process pressure (0600kPa). Thus the gain. Beside we must measure Temperature Temperature measurement is important in industrial control, as direct indications of system or product state and as indirect indications of such factors as reaction rates, energy flow, turbine efficiency, and lubricant quality. Present temperature scales have been in use for about 200 years, the earliest instruments were based on the thermal expansion of gases and liquids. Such filled systems are still employed, although many other types of instruments are available. Representative temperature sensors include: filled thermal systems, liquid-in-glass thermometers, thermocouples, resistance temperature detectors, thermostats, bimetallic devices, optical and radiation pyrometers and temperature-sensitive paints.Advantages of electrical systems include high accuracy and sensitivity, practicality of switching or scanning several measurements points, larger distances possible between measuring elements and controllers, replacement of components(rather than complete system), fast response, and ability to measure higher temperature. Among the electrical temperature sensors, thermocouples and resistance temperature detectors are most widely used.附录3:单片机系统广义地说,微处理系统是用于处理信息的,这种信息可以是电话交谈,仪器读数或企业帐户,但是各种情况下都涉及相同的主要操作:信息处理、存储和传递。在常规的电子设计中,这些操作都是以功能平台方式组合起来的,例如计数器,无论是电子还是机械的,都要存储当前值,并按要求将该值增1。诸如采用计数器的电子钟之类的任一系统要使其存储和处理能力遍布整个系统,因为每个计数器都能存储和处理一些数字。当前微处理化系统与上述的常规方法不同,它将处理,存储和传输三个功能分离形成不同的系统单元。这种形成三个主要单元的分离方法是冯-诺依曼在20世纪40年代所设想出来的,并且是针对微计算机的设想。从此几乎所有制成的计算机都是用这种结构设计的,尽管包含宽广的物理形式,从根本上来说他们均是具有相同的基本设计。在微处理器系统中,处理是由微处理器本身完成的。存储是利用存储器电路,而进入和出自系统的信息传输则是利用特定的输入/输出(I/O)电路。要在一个微处理器化时钟中找出执行计数功能的一个特殊硬件是不可能的,因为时间存储在存储器中,而在固定的时间间隔下由微处理器控制增值。但是,规定系统运转过程的软件包含实现计数器功能的单元。由于系统几乎完全由软件所定义,所以对微处理器结构和其辅助电路这种看起来非常抽象的处理方法使其在应用时非常灵活。这种设计过程主要是软件工程,而且在生产软件时,就会遇到产生于常规工程中相似的构造和维护问题。 图1.1 微型计算机的三个组成部分图1.1显示出了微型计算机中这三个单元是如何按照机器中的信息通信方式而联接起来的。该系统由微处理器控制,它管理自己与存储器和输入/输出单元的信息传输。外部的连接与工程系统的其余部分(即非计算机部分)有关。尽管图中显示的只有一个存储单元,实际中有RAM和ROM两种不同的存储器被使用。由于概念上的计算机存储器更像一个公文柜,上述的“存储器”一词是非常不恰当的;信息存放在一系列已标号的“箱子”中,而且可按问题由“箱子”的序列号进行信息的参考定位。微计算机常使用RAM(随机存取存储器),在RAM中数据可被写入,并且在需要时可被再次读出。这种数据能以任一所希望的次序从存储器中读出,不必按写入时的相同次序,所以有“随机”存取存储器。另一类型ROM(只读存储器)用来保持不受微处理器影响的固定的信息标本;这些标本在电源切断后不会丢失,并通常用来保存规定微处理器化系统运转过程的程序。ROM可像RAM一样被读取,但与RAM不一样的是不能用来存储可变的信息。有些ROM在制造时将其数据标本放入,而另外的则可通过特殊的设备由用户编程,所以称为可编程ROM。被广泛使用的可编程ROM可利用特殊紫外线灯察除,并被成为EPROM,即可察除可编程只读存储器的缩写。另有新类型的期器件不必用紫外线灯而用电察除,所以称为电可察除可编程只读存储器EEPROM。 微处理器在程序控制下处理数据,并控制流向和来自存储器和输入/输出装置的信息流。有些输入/输出装置是通用型的,而另外一些则是设计来控制如磁盘驱动器的特殊硬件,或控制传给其他计算机的信息传输。大多数类型的I/O装置在某种程度下可编程,允许不同形式的操作,而有些则包含特殊用途微处理器的I/O装置不用主微处理器的直接干预,就可实施非常复杂的操作。 假如应用中不需要太多的程序和数据存储量,微处理器、存储器和输入/输出可全被包含在同一集成电路中。这通常是低成本应用情况,例如用于微波炉和自动洗衣机的控制器。当商品被大量地生产时,这种单一芯片的使用就可节省相当大的成本。当技术进一步发展,更强更强的处理器和更大更大数量的存储器被包含形成单片微型计算机,结果使最终产品的装配成本得以节省。但是在可预见的未来,当需要大量的存储器或输入/输出时,还是有必要继续将许多集成电路相互联结起来,形成微计算机。 微计算机的另一主要工程应用是在过程控制中。这是,由于装置是按特定的应用情况由微机编程实现的,对用户来说微计算机的存在通常就更加明显。在过程控制应用中,由于这种设备以较少的数量
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:拖拉机液压悬挂系统自动控制系统研究【电子类】【6张图纸】
链接地址:https://www.renrendoc.com/p-272302.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!