零件图11-13.dwg
零件图11-13.dwg

电脑渐开线齿轮齿形误差检测仪设计【16张图纸】【优秀】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:272934    类型:共享资源    大小:1.42MB    格式:RAR    上传时间:2014-04-20 上传人:上*** IP属地:江苏
50
积分
关 键 词:
电脑 渐开线 齿轮 齿形 误差 检测 设计 图纸 优秀
资源描述:

电脑渐开线齿轮齿形误差检测仪设计

37页 12000字数+说明书+任务书+开题报告+外文翻译+16张CAD图纸【详情如下】

上顶尖1.dwg

下顶尖轴2.dwg

丝杆支座9.dwg

任务书.doc

传感器调整快7.dwg

外文翻译--齿轮和轴的介绍.doc

微调丝杆右固定板10.dwg

总装图.dwg

测量滑块箱体8.dwg

滚珠丝杆14.dwg

滚珠丝杠副17.dwg

滚花螺杆4.dwg

滚花螺杆上支架5.dwg

滚花螺杆垫块6.dwg

电脑渐开线齿轮齿形误差检测仪设计开题报告.doc

电脑渐开线齿轮齿形误差检测仪设计论文.doc

相关资料.doc

轴承座15.dwg

轴承端盖16.dwg

进度表.xls

连接轴3.dwg

零件图11-13.dwg


摘  要

   本次毕业设计首先是对检测仪市场使用情况的数据进行采集工作,以确定设计的方案。

   其次,分析所具备的条件因素,考虑厂方的成组技术要求,进行方案的制定。

   最后,开始零件设计和重要零件三维绘图设计。

   本仪器用于测量直齿或斜齿的圆柱齿轮的渐开线齿轮误差。这种仪器不需要不同尺寸的基圆盘。通过在仪器上的数控装置可以将被测工件的基圆半径调准到0.002MM.仪器表有电感比较仪,其传感器将被测工件齿形的渐开线误差传到指示电表上。本课题主要是着重与仪器机械结构方面的设计,并制作相关的三维软件,以满足设计改进,质量控制,售后服务,商务洽谈方面的要求。

   目前在国内产品中销量很多。国产齿轮测量中心的质量和性能不断提高,已经具有和国外产品竞争的能力。不过在仪器精度、稳定性,尤其在测量软件、仪器故障诊断功能等方面,和国外还有一定差距。

关键词:渐开线;仪器精度;数控装置;传感器


目录

摘  要III

AbstractIV

目录V

1绪论1

1.1 本课题的研究内容和意义1

1.2国内外的发展概况1

1.3本课题应达到的要求2

2 设计的要求及基本技术规格4

2.1 设计参数及要求4

2.2 设计任务及工作量4

2.3 设计内容4

2.3.2 设计说明书,翻译英文资料4

3  总体方案的设计原理5

3.1 总体方案的确定5

3.1.2 齿轮实际齿轮误差的测量5

3.2 原有仪器示意图6

3.3 总体方案的确定6

4 机械部分的设计与说明8

4.1 转动机构的设计8

4.2 导向机构的设计9

4.3 伺服驱动元件的设计10

5 机械传动部分的设计12

5.1 纵向导轨的选择12

5.1.1 承受载荷的估算:12

5.2 横向导轨的选择13

5.3滚珠丝杠副的计算13

5.3.2 额定动载荷的计算13

5.4稳定性验算14

5.5 轴承的选择17

5.5.1 寿命计算17

5.5.2 计算附加轴向力18

5.5.3 计算单个轴承的轴向载荷18

5.5.4计算当量动载荷18

5.5.5 寿命18

5.5.6 额定静载荷验算19

5.5.7 极限转速验算19

5.6 联轴器的选择19

5.7 键的选择与联接强度的计算22

5.8 步进电机的选择23

6 维护与保养25

7 结论和展望26

致谢27

参考文献29

2 设计的要求及基本技术规格

2.1 设计参数及要求

测量范围:m=2~5;

分辨率:  0.002;

     测量齿轮精度等级:7-10级;

     使用范围:基圆直径d≤250m的直齿,斜齿和圆柱齿轮。

2.2 设计任务及工作量

1.完成开题报告。

2.对指定零件进行有限元分析

3.查阅文献15篇以上,并有不少于8000字符的外文资料译文

4.中文摘要在400字以内,有3—4个关键词,外文摘要在2000字符以上

5.至少完成A0图纸4张和一份1万字以上的设计计算说明书

2.3 设计内容

   2.3.1 仪器运动方案的确定

       (1) 仪器伺服系统的选择,设计计算;

       (2) 机械结构总装图,部分零件图设计。

  2.3.2 设计说明书,翻译英文资料4 机械部分的设计与说明

4.1 转动机构的设计

本次设计的系统要求精度很高,运动平稳,工作可靠,这个不仅仅是机械运动和机构所能解决的问题,而是要通过控制装置,使机械转动部分与伺服电动机的动态性相匹配,所以本次设计要求转动机构满足以下几个部分。

 4.1.1 转动惯量小

也就是在不影响机械系统刚度的前提下,转动机构的质量和转动惯量应尽量减小。否则,转动惯量大会造成不良影响,机械负载增大;系统响应速度降低,灵敏度下降。所以在设计转动机构时应尽量减小转动惯量。

 4.1.2 刚度大

刚度是使弹性体单位量所需的作用力。大刚度对机械系统而言是有利的:

(1) 伺服系统动力损失随之减小。

(2) 机构固有频率高,超出机构的频带宽度,使之不容易产生共振。

(3) 增加闭环系统的稳定性。所以再设计时应该选用大刚度的机构。

 4.1.3 阻尼合适

机械系统产生震动时,系统的阻尼越大,其最大振幅就越小而且衰减也越快,但大阻尼也会使系统稳态误差增大,精度降低。所以设计时,转动机构的阻尼要选择适当。此外要球摩擦小(特别是提高机构的灵敏度),抗振性好(提高机构的稳定性),间隙小(保证机构转动精度),特别是其动态特性应与伺服电动机等其他环节的动态特性相匹配。

   基于以上对转动机构的要求,所以本次毕业设计选用滚珠式杠转动机构,它有许多优点,比如:

   (1) 转动效率高,它的效率高达90%-95%,耗费的能量仅为滑动丝杠的1/3。

   (2) 运动具有可逆性,即可以将回转运动变为直线运动,又可以将直线运动变为回转运动,而且逆传动效率几乎与正传动效率相同。

   (3) 系统刚度好,通过给螺旋母组件内施加预压来获得较高的系统刚度,可以满足各种机械传动要求,无爬行现象,始终保持运动的平稳性和灵敏性。

   (4) 传动精度高,经过淬硬并精磨螺纹滚道后的滚珠丝杠副本身就具很高的制造精度,又由于摩擦小,丝刚副工作时温升和热变形小,容易获得较高的传动精度。

   (5) 使用寿命长,滚珠是在淬硬道上做滚动运动,磨损极小,长期使用后仍能保持其精度,因而寿命长,且具有很高的可靠性.其寿命一般比滑动丝杠要高5-6倍。

   但是,滚动丝杠也有缺点,如:

   (1) 不能自锁,特别是垂直安装的丝杠,当运动停止后,螺母将在重力重用下下滑,故长需设置制动装置。

   (2) 造工艺复杂,滚珠丝杠和螺母等件加工精度,表面粗糙度要求很高,制造成本高。

   虽然滚珠丝杠有两个缺点,但是基于它有这么多优点,能保证本次设计测头的测量精度,

内容简介:
无锡太湖学院机电系 机械工程及自动化 专业毕 业 设 计论 文 任 务 书一、题目及专题:1、题目电脑渐开线齿轮齿形误差检测仪设计 2、专题 二、课题来源及选题依据 课题来源:实验室 选题依据:主要是针对老式手动渐开线齿轮齿形误差测量仪进行数控化改造, 通过此改造设计过程,能熟练掌握手动量仪的工作原理及机械结构,并在此基础上考虑其数控化改造方案。改过去的普通丝杠为滚珠丝杠,并以步进电机带动传动部件,采用8051单片机进行控制。 三、本设计应达到的要求:一、针对原有老式手动仪器的数控化改造,因此系统采应新的机电一体化技术和元件器,以及电脑控制的伺服系统。本次设计的主要是机电一体化机械系统方面的设计。本仪器用于测量直齿或斜齿的圆柱齿轮的渐开线齿轮误差。这种仪器不需要不同尺寸的基圆盘。通过在仪器上的数控装置可以将被测工件的基圆半径调准到0.002MM.仪器表有电感比较仪,其传感器将被测工件齿形的渐开线误差传到指示电表上。 二、 对指定零件进行有限元分析。 三、 查阅文献15篇以上,并有不少于8000字符的外文资料译文。 四、 完成开题报告。 五、 中文摘要在400字以内,有34个关键词,外文摘要与中文摘要相同。 六、 至少完成A0图纸3张和一份1万字以上的设计计算说明书。四、接受任务学生: 机械91 班 姓名 朱敬松 五、开始及完成日期:自2011年11月7日 至2012年5月25日六、设计(论文)指导(或顾问):指导教师签名 签名 签名教研室主任学科组组长研究所所长签名 系主任 签名2011年11月7日I GEAR AND SHAFT INTRODUCTIONAbstract: The important position of the wheel gear and shaft cant falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, using for many situations respectively.So we must be they to the understanding of the wheel gear and shaft in many ways .Key words: Wheel gear;ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered. Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elements pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft” covers numerous variations, such as axles and spindles.: a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as flows1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3. Band type4. Disk or axial type5. Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary: 1. Assume or determine the distribution of pressure on the frictional surfaces.2. Find a relation between the maximum pressure and the pressure at any point3. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions. Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others. A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements. Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required. Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal. An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth. Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained. 齿轮和轴的介绍摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。齿轮和轴主要安装在主轴箱来传递力的方向。通过加工制造它们可以分为许多的型号,分别用于许多的场合。所以我们对齿轮和轴的了解和认识必须是多层次多方位的。关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。我们将研究作用力具有三维坐标的齿轮。因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。而在锥齿轮的情况中各回转轴线互相不平行。像我们要讨论的那样,尚有其他道理需要学习,掌握。斜齿轮用于传递平行轴之间的运动。倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。齿的形状是一溅开线螺旋面。如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。在直齿圆柱齿轮中,接触是平行于回转轴线的。在斜齿轮中,该先是跨过齿面的对角线。它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。斜齿轮使轴的轴承承受径向和轴向力。当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。他们产生相反的轴向推力作用,这样就消除了轴向推力。当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。因此他们只能传递小的载荷和主要用于仪器设备中,而且肯定不能推荐在动力传动中使用。交错轴斜齿轮与斜齿轮之间在被安装后互相捏合之前是没有任何区别的。它们是以同样的方法进行制造。一对相啮合的交错轴斜齿轮通常具有同样的齿向,即左旋主动齿轮跟右旋从动齿轮相啮合。在交错轴斜齿设计中,当该齿的斜角相等时所产生滑移速度最小。然而当该齿的斜角不相等时,如果两个齿轮具有相同齿向的话,大斜角齿轮应用作主动齿轮。蜗轮与交错轴斜齿轮相似。小齿轮即蜗杆具有较小的齿数,通常是一到四齿,由于它们完全缠绕在节圆柱上,因此它们被称为螺纹齿。与其相配的齿轮叫做蜗轮,蜗轮不是真正的斜齿轮。蜗杆和蜗轮通常是用于向垂直相交轴之间的传动提供大的角速度减速比。蜗轮不是斜齿轮,因为其齿顶面做成中凹形状以适配蜗杆曲率,目的是要形成线接触而不是点接触。然而蜗杆蜗轮传动机构中存在齿间有较大滑移速度的缺点,正像交错轴斜齿轮那样。蜗杆蜗轮机构有单包围和双包围机构。单包围机构就
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:电脑渐开线齿轮齿形误差检测仪设计【16张图纸】【优秀】
链接地址:https://www.renrendoc.com/p-272934.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!