后轮鼓式[5张].dwg
后轮鼓式[5张].dwg

微型车路宝汽车制动系统的设计【8张CAD图纸和毕业论文】【汽车专业】【前盘后鼓式制动器】

收藏

压缩包内文档预览:
预览图
编号:288695    类型:共享资源    大小:1.82MB    格式:RAR    上传时间:2014-06-06 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
汽车 制动 系统 设计
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763


目    录


摘要

Abstract

第1章 绪论1

1.1 制动系统设计的意义3

1.2 制动系统研究现状3

1.3 制动系统设计内容4

第2章 制动系统总体方案设计5

2.1 制动器的结构型式的选择5

2.2 制动驱动机构的结构型式的方案比较选择7

2.3 制动管路的多回路系统9

2.4 本章小结10

第3章 制动器设计计算11

3.1 路宝汽车的主要技术参数11

3.2 制动系统的主要参数及其选择11

3.2.1 同步附着系数11

3.2.2 制动强度和附着系数利用率12

3.2.3 制动器最大的制动力矩13

3.3 制动器的结构参数14

3.3.1 鼓式制动器的结构参数14

3.3.2 盘式制动器的结构参数16

3.4 制动器的设计计算17

3.4.1 鼓式制动器摩擦片上的制动力矩17

3.4.2 盘式制动器制动块上的制动力矩21

3.4.3 制动器的效能因数22

3.5 摩擦衬片的磨损特性计算26

3.6 制动器的热容量和温升的核算26

3.7 驻车制动计算27

3.8 制动器主要零件的结构设计28

3.8.1 制动鼓28

3.8.2 制动蹄29

3.8.3 制动底板29

3.8.4 制动蹄的支承29

3.8.5 制动轮缸29

3.8.6 制动盘30

3.8.7 制动钳30

3.8.8 制动块30

3.8.9 摩擦材料30

3.8.10 制动摩擦衬片31

3.8.11 制动器间隙31

3.9 制动蹄支承销剪切应力计算32

3.10 本章小结34

第4章 制动驱动机构的设计计算35

4.1 轮缸直径与工作容积35

4.1.1 盘式制动器直径与工作容积35

4.1.2 鼓式制动器直径与工作容积36

4.2 制动主缸直径与工作容积36

4.3 制动轮缸活塞宽度与缸筒的壁厚37

4.3.1 盘式制动轮缸活塞宽度与缸筒壁厚37

4.3.2 盘式制动器活塞宽度与缸筒壁厚38

4.4 制动主缸行程的计算38

4.5 制动主缸活塞宽度与缸筒的壁厚39

4.5.1 制动主缸活塞宽度39

4.5.2 制动主缸筒的壁厚39

4.6 制动踏板力与踏板行程39

4.7 真空助力器41

4.8 制动液的选择与使用42

4.9 制动力分配的调节装置43

4.9.1 感载比例阀43

4.10 本章小结44

结论45

参考文献46

致谢47

附录48



第1章 绪  论


1.1制动系统设计的意义

   汽车制动器是汽车制动系统的重要组成部分,是汽车行驶安全的重要部件之一.作为一种新型的制动部件,盘式制动器与传统的鼓式制动器比较,具有散热快、重量轻 、构造简单、调整方便、制动效果稳定、热稳定性好、耐高温性能好等优势,随着高速公路发展和车流密度增大,出现了频繁的交通事故。而盘式制动器,尤其是浮动钳盘式制动器以其优越的制动性能已得到了汽车制造厂家及用户的极大关注,有着非常好的发展前景。从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。

   汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系统工作可靠的汽车,才能充分发挥其动力性能作为制动系重要组成部分之一的制动器在我国发展前景广阔,目前乘用车主要采用前盘后鼓式和全盘式制动器,20%的乘用车采用前盘后鼓式制动器,商用车主要采用全鼓式制动器,只有高档客车和有特殊需求的车辆才采用前盘后鼓式制动器和全盘式制动器。随着对汽车制动性能的提高,越来越多的先进电子制动技术得到采用。

   制动器作为制动系中直接作用制约汽车运动的一个关健装置,车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用,而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上。制动器是将汽车的动能以摩擦方式转化为热能并加以吸收的机构,不仅要按产生足够的制动力的条件,还要按能量容量和磨损寿命足够的条件来确定制动器。为确保制动稳定性可靠,热稳定性好,寿命长,造价低,现今的制动器产品无论从性能、结构方面,还是生产制造方式和操纵控制方面,都在发生着诸多的变化。它们大大地优化了制动器各方面的性能,从某种程度上看,这些变化也反映了汽车制动器的发展方向。制动器主要有摩擦式、液力式和电磁式等几种形式。电磁式制动器虽有作用滞后性好、易于连接而且街头可靠等优点,但因成本高,只在一部分总质量较大的商用车用车轮制动器或缓速器;液力式制动器一般只用作缓速器。目前广泛使用的仍为摩擦式制动器。在国内主要从事鼓式制动器总成的企业有万向钱潮、亚太机电、重庆红宇等一些企业。2004年前八家企业产量集中度达到85.4%。随着近几年汽车盘式制动器的发展,液压鼓式制动器目前只在一些比较低档的经济型轿车上在使用。根据慧聪汽车市场研究所最新的统计表明,2008年1~7月,我国乘用车中刹车制动器用鼓式制动器只占20%,并且鼓式制动器目前已经彻底退出前轮制动。自2000年以来,我国盘式制动器市场需求增长速度发展非常快。从中国汽车工业协会统计的情况来看,2000年我国盘式制动器的产量只有57.58万套,到2004年迅速增长到468.72万套,增长7倍多,年平均增长率高达68.9%,2007年增长至1000万套。过去5年里,我国盘式制动器应用的增长非常迅速。

   汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。

   鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。

   盘式制动器的旋转元件是一个垂向安放且以两侧面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用于制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用;而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。

       随着我国汽车工业技术的发展,特别是轿车工业的发展,合资企业的引进,国外先进技术的进入,汽车上采用盘式制动器配置正逐步在我国形成规模。特别是在提高整车性能、保障安全、提高乘车者的舒适性等方面都发挥了很大的作用, 预计未来几年,随着我国公路交通条件的改善,高等级公路的发展,新法则要求的实施,车辆性能的不断提高,盘式制动器作为新型的能提高汽车主动安全性的产品将会得到快速的推广和应用,有着广阔市场前景。现在汽车盘式制动器的研究和开发应注重的问题主要是:提高制动器的制动效能、防止尘污和锈蚀、减轻重量、简化结构、降低成本、向电子报警和智能化系统的发展,以及实用性更强与寿命更长等。

1.2制动系统研究现状

   汽车是现代交通工具中用得最多、最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。

   虽然近几年从德国大众、法国雷诺、美国通用等国外汽车引进了轿车,不少零配件的国产率也比较高,但引进的主要是总成和零配件,没有引进开发技术,至于轻型客货车的开发技术引进就更少了,所以我国自行开发轻型客货车及其轿车的能力,跟汽车发达国家相比差距还是很大。近年来我国出版过很多汽车制动方面的著作,但是从数量上还是不能满足汽车工业发展的要求。特别是在汽车制动器的开发和设计方面与发达国家相差很大,许多尖端技术还不能了解。所以对于研究设计制动器来说,在我国有着非常重要的影响。

哈飞路宝是哈飞汽车继哈飞中意之后与意大利Pininfarina公司联合设计开发的一款两厢五门轿车,其特点:车身小巧、内饰外观精美、安全性能高、动力强劲、油耗低,排放根据需求可分别达到欧洲Ⅱ号与欧洲Ⅲ号标准。路宝汽车制动器是前轮盘式制动器,后轮鼓式制动器,相比四轮都采用盘式制动器,这种设计方式初衷是使其更经济。因为对路宝汽车的消费人群来说,选路宝本身就因为其优秀的性价比,所以需要为其设计经济实用的制动器。

通过制动器的结构型式和设计参数对汽车安全性有直接影响.因此,制动器型式选择、设计参数选择及设计计算对汽车的整车设计极其重要。通过制动器设计熟悉汽车总成和零件设计。

1.3制动系统设计内容

   (1)研究、确定制动制动驱动形式。

(2)研究、确定制动系统的构成

   1)设计制动系统示意图。

   2)驻车制动采用的形式。

   3)是否需要有辅助制动。

   (3)汽车必需制动力及其前后分配的确定 。

   (4) 确定制动器制动力、摩擦片寿命及构造、参数。

   (5) 制动器零件设计及作图。

   (6) 制动操纵系统设计。

   (7) 管路设计及布置



第2章 制动系统总体方案设计


   汽车制动系统总体方案设计,主要涉及制动器的结构型式选择,制动驱动机构的结构型式选择,制动管路布置结构型式的选择等三个方面。本章将就这三个方面的问题进行分析论证。

2.1 制动器的结构型式的选择

   车轮制动器主要用于行车制动系统,有时也兼作驻车制动之用。制动器主要有摩擦式、液力式、和电磁式等三种形式。电磁式制动器虽有作用滞后性好、易于连接而且接头可靠等优点,但因成本太高,只在一部分总质量较大的商用车上用作车轮制动器或缓速器;液力式制动器一般只用缓速器。目前广泛使用的仍为摩擦式制动器[2]。

   摩擦式制动器按摩擦副结构不同,可以分为鼓式、盘式和带式三种。带式只用于中央制动器;鼓式和盘式应用最为广泛。鼓式制动器广泛应用于商用车,同时鼓式制动器结构简单、制造成本低。

   鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的凸缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。现外束型鼓式制动器主要用于中央制动器的设计[1]。

   相对于鼓式制动器盘式制动器具有以下优点:

   (1)热稳定性好;


内容简介:
SY-025-BY-1毕业设计(论文)题目审定表指导教师姓名臧 杰职称教授从事专业车辆工程是否外聘是否题目名称路宝汽车制动系统的设计课题适用专业车辆工程课题类型X 课题简介:(主要内容、意义、现有条件、预期成果及表现形式。) 指导教师签字: 年 月 日教研室意见1选题与专业培养目标的符合度好较好一般较差2对学生能力培养及全面训练的程度好较好一般较差3选题与生产、科研、实验室建设等实际的结合程度好较好一般较差4论文选题的理论意义或实际价值好较好一般较差5课题预计工作量较大适中较小6课题预计难易程度较难一般较易 教研室主任签字: 年 月 日系(部)教学指导委员会意见: 负责人签字: 年 月 日注:课题类型填写 W.科研项目;X.生产(社会)实际;Y.实验室建设;Z.其它。SY-025-BY-2毕业设计(论文)任务书学生姓名刘池系部汽车与交通工程学院专业、班级车辆工程07-8班指导教师姓名 臧杰职称教授从事专业汽车运用工程是否外聘是否题目名称路宝汽车制动系统的设计一、设计(论文)目的、意义随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系统工作可靠的汽车,才能充分发挥其动力性能作为制动系重要组成部分之一的制动器在我国发展前景广阔,目前乘用车主要采用前盘后鼓式和全盘式制动器,20%的乘用车采用前盘后鼓式制动器,商用车主要采用全鼓式制动器,只有高档客车和有特殊需求的车辆才采用前盘后鼓式制动器和全盘式制动器。随着对汽车制动性能的提高,越来越多的先进电子制动技术得到采用。汽车制动器的结构型式和设计参数除对汽车的安全性有直接影响。因此,制动系统的结构型式选择、设计参数选取及设计计算对汽车的整车设计极其重要。通过对整个制动系统的设计熟悉汽车总成和零部件的设计掌握汽车制动器结构设计原则和方法。培养正确的研究方法、理论联系实际的工作作风、严肃求实的学习态度。课题综合运用了机械设计、工程材料、汽车设计、汽车构造、CAD绘图等知识。二、设计(论文)内容、技术要求(研究方法)1、设计的主要内容(1)制动系统各部分结构的结构形式选择(2)查阅路宝汽车的整车参数,并按照参数确定各项基本参数(3)计算制动盘及制动鼓直径、制动蹄片及制动衬块尺寸、液压缸直径、制动主缸直径、制动力矩、制动效能因数、和有效制动半径等。(4)校核该制动器的制动性能(5)用CAD画装配图、零件图。 2、技术要求(研究方法)(1)通过文献资料收集,熟悉汽车制动器设计和CAD的有关理论知识,国内外制动器设计方法和汽车计算机辅助设计的发展状况。(2)实地到汽车厂等部门实习调查,了解汽车制动器设计方法。(3)编写课题研究大纲和开题报告。(4)确定路宝车各项参数,计算确定各总成参数和尺寸,完成有关CAD图纸。(5)按进度要求独立完成毕业设计,服从指导教师安排;完成的毕业设计格式规范;方案选择合理,具有可行性、经济性、适用性,设计思路清晰,符合实际,图纸正确符合制图标准,内容完整。设计和汽车计算机辅助设计的发展状况。三、设计(论文)完成后应提交的成果0号图纸3张;设计说明书1.5万字以上。四、设计(论文)进度安排(1) 调研、资料收集,完成开题报告。 第4周(3月24日3月30日)(2) 分析并制动系统各部分的具体结构形式,主要零 部件及相互位置关系。根据给定的设计参数,按 照有关的设计要求和顺序进行具体结构尺寸参数 计算及其他有关参数的选配,针对给定的设计参 数优选制动系统的总体方案。 第5周(3月31日4月8日)(4) 进行制动系统各零部件的设计计算。 第6、7周(4月9日4月22日)(5) 完成部分设计图纸及说明书初稿。 第8、9周(4月23日5月8日)(7) 完成制动系统装配图、主要零件图,完成设计说明书 第10、14周(5月9日6月6日)(8) 设计及说明书初稿提交。 第14周(6月7日)(9) 毕业设计(论文)审核、修改。 第15、16周(6月9日6月22日)(10)毕业设计答辩。 第17周(6月23日6月 29日)五、主要参考资料1臧杰,阎岩汽车构造北京:机械工业出版社,20052刘惟信.汽车设计.北京:清华大学出版社,20013王望予.汽车设计.第3版.北京:机械工业出版社,20004汽车工程手册编辑委员会.汽车工程手册.设计篇.北京:人民交通出版社,20015汽车工程手册编辑委员会.汽车工程手册.制造篇.北京:人民交通出版社,20016余志生.汽车理论.第3 版.北京:机械工业出版社,20007张洪欣.汽车底盘设计.北京:机械工业出版社,19988 霍城儒.盘式制动器设计N. 建筑机械,1996.8.9 罗善瞀.浮动钳盘式制动器设计方法N.建筑机械,1986.7.10 沈荣华、邹宝平.汽车钳盘式制动器优化设计J机械研究与应用,1998.六、备注指导教师签字:年 月 日教研室主任签字: 年 月 日SY-025-BY-3毕业设计(论文)开题报告学生姓名刘池系部汽车与交通工程学院专业、班级车辆工程07-8班指导教师姓名臧杰职称教授从事专业汽车运用工程是否外聘是否题目名称路宝汽车制动系统的设计一、课题研究现状、选题目的和意义 1.课题研究现状:从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系统工作可靠的汽车,才能充分发挥其动力性能作为制动系重要组成部分之一的制动器在我国发展前景广阔,目前乘用车主要采用前盘后鼓式和全盘式制动器,20%的乘用车采用前盘后鼓式制动器,商用车主要采用全鼓式制动器,只有高档客车和有特殊需求的车辆才采用前盘后鼓式制动器和全盘式制动器。随着对汽车制动性能的提高,越来越多的先进电子制动技术得到采用。制动器作为制动系中直接作用制约汽车运动的一个关健装置,车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用,而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上。制动器是将汽车的动能以摩擦方式转化为热能并加以吸收的机构,不仅要按产生足够的制动力的条件,还要按能量容量和磨损寿命足够的条件来确定制动器。为确保制动稳定性可靠,热稳定性好,寿命长,造价低,现今的制动器产品无论从性能、结构方面,还是生产制造方式和操纵控制方面,都在发生着诸多的变化。它们大大地优化了制动器各方面的性能,从某种程度上看,这些变化也反映了汽车制动器的发展方向。制动器主要有摩擦式、液力式和电磁式等几种形式。电磁式制动器虽有作用滞后性好、易于连接而且街头可靠等优点,但因成本高,只在一部分总质量较大的商用车用车轮制动器或缓速器;液力式制动器一般只用作缓速器。目前广泛使用的仍为摩擦式制动器。在国内主要从事鼓式制动器总成的企业有万向钱潮、亚太机电、重庆红宇等一些企业。2004年前八家企业产量集中度达到85.4%。随着近几年汽车盘式制动器的发展,液压鼓式制动器目前只在一些比较低档的经济型轿车上在使用。根据慧聪汽车市场研究所最新的统计表明,2008年17月,我国乘用车中刹车制动器用鼓式制动器只占20%,并且鼓式制动器目前已经彻底退出前轮制动。自2000年以来,我国盘式制动器市场需求增长速度发展非常快。从中国汽车工业协会统计的情况来看,2000年我国盘式制动器的产量只有57.58万套,到2004年迅速增长到468.72万套,增长7倍多,年平均增长率高达68.9%,2007年增长至1000万套。过去5年里,我国盘式制动器应用的增长非常迅速。汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。盘式制动器的旋转元件是一个垂向安放且以两侧面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用于制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用;而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。 随着我国汽车工业技术的发展,特别是轿车工业的发展,合资企业的引进,国外先进技术的进入,汽车上采用盘式制动器配置正逐步在我国形成规模。特别是在提高整车性能、保障安全、提高乘车者的舒适性等方面都发挥了很大的作用, 预计未来几年,随着我国公路交通条件的改善,高等级公路的发展,新法则要求的实施,车辆性能的不断提高,盘式制动器作为新型的能提高汽车主动安全性的产品将会得到快速的推广和应用,有着广阔市场前景。现在汽车盘式制动器的研究和开发应注重的问题主要是:提高制动器的制动效能、防止尘污和锈蚀、减轻重量、简化结构、降低成本、向电子报警和智能化系统的发展,以及实用性更强与寿命更长等。随着计算机软硬件日新月异的发展,使得对一些系统级的大规模计算成为了可能,从而制动器的设计及研究有了很多科学的方法。目前可由于制动器设计用途的计算和分析软件主要用于解决设计中的各种数值和分析。包括:数学计算软件,如MATLAB、MATHCAD等。有限元分析软件,如IDeas,SAP-5,ADINA,ANSYS等。目前有限元分析的理论和方法已日趋成熟,这些软件还包含了较强的前、后处理功能。优化设计软件,如IBM公司的ODL、我国的OPB2等。对制动器的仿真优化设计方法如CAE软件对制动器壳体进行拓扑优化的思路和方法,涉及到的软件包括有HyperWorks(前后处理及优化求解),ABAQUS(非线性求解及后处理);采用MATLAB优化工具箱中的遗传算法进行优化求解,建立以制动温升最低和制动力矩最大为目标函数模型;2.选题的目的依据和意义汽车是现代交通工具中用得最多、最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 虽然近几年从德国大众、法国雷诺、美国通用等国外汽车引进了轿车,不少零配件的国产率也比较高,但引进的主要是总成和零配件,没有引进开发技术,至于轻型客货车的开发技术引进就更少了,所以我国自行开发轻型客货车及其轿车的能力,跟汽车发达国家相比差距还是很大。近年来我国出版过很多汽车制动方面的著作,但是从数量上还是不能满足汽车工业发展的要求。特别是在汽车制动器的开发和设计方面与发达国家相差很大,许多尖端技术还不能了解。所以对于研究设计制动器来说,在我国有着非常重要的影响。哈飞路宝是哈飞汽车继哈飞中意之后与意大利Pininfarina公司联合设计开发的一款两厢五门轿车,其特点:车身小巧、内饰外观精美、安全性能高、动力强劲、油耗低,排放根据需求可分别达到欧洲号与欧洲号标准。路宝汽车制动器是前轮盘式制动器,后轮鼓式制动器,相比四轮都采用盘式制动器,这种设计方式初衷是使其更经济。因为对路宝汽车的消费人群来说,选路宝本身就因为其优秀的性价比,所以不会对车本身的配置级别产生多高的要求。整个制动系统的设计参数对汽车安全性有直接影响.因此,制动器型式选择、设计参数选择及设计计算对汽车的整车设计极其重要。通过制动系统设计熟悉汽车总成和零件设计。通过路宝汽车制动系统设计掌握制动器设计的方法,更重要的是培养正确的研究方法与学习态度、提高创新开发能力,提高对汽车构造、汽车设计、工程材料、工程绘图等。二、设计(论文)的基本内容、拟解决的主要问题 (一)基本内容: 路宝2008款1.1标准型制动器设计主要参数 车重:895kg 最大扭矩:88/3000-3500N.m/rpm 前轮胎:165/65 R13 后轮胎:165/65 R13 最高车速:140.0 车长:3618mm(1) 制动系统的制动器及驱动系统的结构形式选择(本设计选用液压式前轮盘式制动器和液压式后轮鼓式制动器)(2) 根据路宝汽车的整车参数,并按照参数确定制动器的基本参数(3) 计算制动盘及制动鼓直径、制动衬块(衬片)参数、液压缸及制动主缸参数等(4) 并校核该制动器的制动性能(5) 用CAD画装配图、零件图.(6) 编写设计说明书. 2、技术要求(研究方法)(1) 通过文献资料收集,熟悉汽车制动系统设计和CAD的有关理论知识,国内外制动器设计方法和汽车计算机辅助设计的发展状况。(2) 实地到汽车厂等部门实习调查,了解汽车制动器设计方法。(3) 编写课题研究大纲和开题报告。(4) 确定路宝车各项参数,计算确定各总成参数和尺寸,完成有关CAD图纸。(5) 按进度要求独立完成毕业设计,服从指导教师安排;完成的毕业设计格式规范; 方案选择合理,具有可行性、经济性、适用性,设计思路清晰,符合实际,图纸正确符合制图标准,内容完整。设计和汽车计算机辅助设计的发展状况。 (二)拟解决的主要问题 利用已具备的初步设计基础,工程制图与AutoCAD,机械制造工艺学,工程材料及热处理等知识,与查阅图书馆丰富的设计资料及其他相关资料书籍,认真完成所做课题。(1) 制动器力矩的分析计算。(2) 制动鼓直径及制动蹄片的部分参数的计算。(3) 制动蹄上的张开力计算。(4) 制动盘直径及制动衬块部分参数的计算。(5) 制动效能因数的分析计算。(6) 摩擦衬片(衬块)得磨损特性的计算。(7) 液压缸及液压主缸直径计算。三、技术路线(研究方法) 研究方法主要有:对比法(对制动系统零部件各种性质进行择优选取);查阅法(对设计参数查阅)查阅文献,路宝汽车相关资料初步选择设计方案盘式制动器(前)液压鼓式制动器(后)液压盘式制动器主要参数的选择和确定盘式制动器主要几何尺寸的计算强度校核鼓式制动器主要参数的选择和确定鼓式制动器主要几何尺寸的计算强度校核完成毕业设计和说明书,利用AUTOCAD进行绘图 四、进度安排(1) 调研、资料收集,完成开题报告。 第4周(3月24日3月30日)(2) 分析并制动系统各部分的具体结构形式,主要零 部件及相互位置关系。根据给定的设计参数,按 照有关的设计要求和顺序进行具体结构尺寸参数 计算及其他有关参数的选配,针对给定的设计参 数优选制动系统的总体方案。 第5周(3月31日4月8日)(4) 进行制动系统各零部件的设计计算。 第6、7周(4月9日4月22日)(5) 完成部分设计图纸及说明书初稿。 第8、9周(4月23日5月8日)(7) 完成制动系统装配图、主要零件图,完成设计说明书 第10、14周(5月9日6月6日)(8) 设计及说明书初稿提交。 第14周(6月7日)(9) 毕业设计(论文)审核、修改。 第15、16周(6月9日6月22日)(10)毕业设计答辩。 第17周(6月23日6月 29日)五、参考文献 1 臧杰,阎岩.汽车构造.北京:机械工业出版社,2005.2 刘惟信.汽车设计.北京:清华大学出版社,2001.3 王望予.汽车设计.第三版.北京:机械工册.设计篇.北京:人民交通出版社,2001.4 汽车工程手册编辑委员会.汽车工程手册.制造篇.北京:工业出版社,2000.5 汽车工程手册编辑委员会.汽车工程手册.设计篇.北京:人民交通出版社,2001.6 余志生.汽车理论.第三版.北京:机械工业出版社,2000.7 沈荣华、邹宝平.汽车前盘式制动器优化设计J机械研究与应用,1998.8 姜平,黄文娟基于MATLAB的盘式制动器优化设计J机械工程与自动化,2007,34(6):1601619 吴军,李为吉基于改进粒子算法的盘式制动器优化设计J机械设计制造,2007,43(4):182010 董宝承.汽车底盘.北京:机械工业出版社,2004:3281.11 彭文生,张志明,黄华梁.机械设计.北京:高等教育出版社,2002:96138.12 侯洪生,王秀英.机械工程图学.北京:科学出版社,2001:22533313 郑玉华 主编,典型机械产品构造,北京:科学出版社,2001.14 濮良贵,纪名刚.机械设计.第七版.北京:高等教育出版社,2005:109111 38740615 李新城 主编,材料成形学,北京:机械工业出版社,2000.8.16 邓文英 宋力宏 主编,金属工艺学,北京:高等教育出版社,2005.11.17 J.Reimpell,H.stoll.The Automotive chassis:Engineering Principles.Warrendale,PA15096,USA,SAE,1996.18 John Fenton.Hand Book of Vehicle Design Analysis.Warrendale,PA.,USA:Society of Automotive Engineers,Inc.,1996.六、备注指导教师意见:签字: 年 月 日SY-025-BY-4毕业设计(论文)指导记录日期地点指导方式指导记录(指导内容、存在问题及解决思路)学生(记录人)签名: 指导教师签名:日期地点指导方式指导记录(指导内容、存在问题及解决思路)学生(记录人)签名: 指导教师签名:日期地点指导方式指导记录(指导内容、存在问题及解决思路)学生(记录人)签名: 指导教师签名:毕业论文指导教师评分表学生姓名刘池院系汽车与交通工程学院专业班级车辆工程07-8指导教师姓名臧杰职称教授从事专业汽车运用工程是否外聘是否题目名称路宝汽车制动系统的设计 序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;选题的理论意义或实际价值103查阅文献资料能力;综合运用知识能力154研究方案的设计能力;研究方法和手段的运用能力;外文应用能力255文题相符程度;写作水平156写作规范性;篇幅;成果的理论或实际价值;创新性157科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 指导教师签字: 年 月 日毕业设计指导教师评分表学生姓名刘池院系汽车与交通工程学院专业班级车辆工程07-8指导教师姓名臧杰职称教授从事专业汽车运用工程是否外聘是否题目名称路宝汽车制动系统的设计序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力205计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)106插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)58科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 指导教师签字: 年 月 日 毕业论文评阅人评分表学生姓名刘池专业班级车辆工程07-8指导教师姓名臧杰职称教授题目路宝汽车制动系统的设计评阅组或预答辩组成员姓名出席人数序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度152题目工作量;选题的理论意义或实际价值103查阅文献资料能力;综合运用知识能力204研究方案的设计能力;研究方法和手段的运用能力;外文应用能力255文题相符程度;写作水平156写作规范性;篇幅;成果的理论或实际价值;创新性15得 分 Y= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 评阅人或预答辩组长签字: 年 月 日注:毕业设计(论文)评阅可以采用2名评阅教师评阅或集体评阅或预答辩等形式。 毕业设计评阅人评分表学生姓名刘池专业班级车辆工程07-8指导教师姓名臧杰职称教授题目路宝汽车制动系统的设计评阅组或预答辩组成员姓名出席人数序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力255计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)156插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)5得 分 Y= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 评阅人或预答辩组长签字: 年 月 日注:毕业设计(论文)评阅可以采用2名评阅教师评阅或集体评阅或预答辩等形式。毕业论文答辩评分表学生姓名刘池专业班级车辆工程07-8指导教师臧杰职 称教授题目 路宝汽车制动系统的设计答辩时间月 日 时答辩组成员姓名出席人数序号评 审 指 标满分得分1选题与专业培养目标的符合程度,综合训练情况,题目难易度、工作量、理论意义或价值102研究方案的设计能力、研究方法和手段的运用能力、综合运用知识的能力、应用文献资料和外文的能力203论文撰写水平、文题相符程度、写作规范化程度、篇幅、成果的理论或实际价值、创新性154毕业论文答辩准备情况55毕业论文自述情况206毕业论文答辩回答问题情况30总 分 Z= 答辩过程记录、评语:自述思路与表达能力:好 较好 一般 较差 很差回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 答辩组长签字: 年 月 日毕业设计答辩评分表学生姓名刘池专业班级车辆工程07-8指导教师臧杰职 称教授题目 路宝汽车制动系统的设计答辩时间月 日 时答辩组成员姓名出席人数序号评 审 指 标满分得分1选题与专业培养目标的符合程度,综合训练情况,题目难易度、工作量、与实际的结合程度102设计(实验)能力、对实验结果的分析能力、计算能力、综合运用知识能力103应用文献资料、计算机、外文的能力104设计说明书撰写水平、图纸质量,设计的规范化程度(设计栏目齐全合理、SI制的使用等)、实用性、科学性和创新性155毕业设计答辩准备情况56毕业设计自述情况207毕业设计答辩回答问题情况30总 分 Z= 答辩过程记录、评语:自述思路与表达能力:好 较好 一般 较差 很差回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 答辩组长签字: 年 月 日毕业设计(论文)成绩评定表学生姓名刘池性别男院系汽车与交通工程学院专业车辆工程班级07-8设计(论文)题目路宝汽车制动系统的设计平时成绩评分(开题、中检、出勤)指导教师姓名职称指导教师评分(X)评阅教师姓名职称评阅教师评分(Y)答辩组组长职称答辩组评分(Z)毕业设计(论文)成绩百分制五级分制答辩委员会评语:答辩委员会主任签字(盖章): 院系公章: 年 月 日注:1、平时成绩(开题、中检、出勤)评分按十分制填写,指导教师、评阅教师、答辩组评分按百分制填写,毕业设计(论文)成绩百分制=W+0.2X+0.2Y+0.5Z 2、评语中应当包括学生毕业设计(论文)选题质量、能力水平、设计(论文)水平、设计(论文)撰写质量、学生在毕业设计(论文)实施或写作过程中的学习态度及学生答辩情况等内容的评价。优秀毕业设计(论文)推荐表题 目路宝汽车制动系统的设计类别学生姓名刘池院(系)、专业、班级车辆工程07-8指导教师臧杰职 称教授设计成果明细:答辩委员会评语:答辩委员会主任签字(盖章): 院、系公章: 年 月 日备 注: 注:“类别”栏填写毕业论文、毕业设计、其它毕业设计(论文)过程管理材料题 目路宝汽车制动系统的设计学生姓名刘池院系名称汽车与交通工程学院专业班级车辆07-8班指导教师臧 杰职 称教 授教研室汽车技术基础教研室起止时间2011年2月28日-2011年6月24日教 务 处 制本科学生毕业设计路宝汽车制动系统的设计 系部名称: 汽车与交通工程学院 专业班级: 车辆工程07-8班 学生姓名: 刘 池 指导教师: 臧 杰 职 称: 教 授 黑 龙 江 工 程 学 院二一一年六月The Graduation Design for Bachelors DegreeThe Design of LUBAO Braking SystemCandidate:Liu Chi Specialty:Vehicle EngineeringClass:07-8 Supervisor:Prof. Zang JieHeilongjiang Institute of Technology 2011HarBin黑龙江工程学院本科生毕业设计摘 要国内汽车市场迅速发展,随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。本说明书主要根据已有的路宝汽车的数据对制动系统进行设计。首先介绍了汽车制动系统的发展、结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定方案采用液压双回路前盘后鼓式制动器的制动系统。除此之外,它还介绍了前后制动器、制动主缸的设计计算,主要部件的参数选择及制动管路布置形式等的设计过程。关键字:制动;鼓式制动器;盘式制动器;液压;制动管路I黑龙江工程学院本科生毕业设计ABSTRACTThe rapid development of the domestic vehicle market, However, with increasing of vehicle, security issues are arising from increasingly attracting attention, the braking system is one of important system of active safety. Therefore, how to design a high-performance braking system, to provide protection for safe driving is the main problem we must solve. In addition, with increasing competition of vehicle market, how to shorten the product development cycle, to improve design efficiency and to lower costs, to improve the market competitiveness of products, and has become a key to success of enterprises.This paper mainly introduces the design of braking system ,which based on the data of brake system used in LUBAO. Fist of all, braking systems development, structure and category are shown, and according to the structures, virtues and weakness of drum brake and disc brake, analysis is done. At last, the plan adopting the braking system with hydroid two-backway brake with front disc and rear drum. Besides, this paper also introduces the designing process of front brake and rear brake, braking cylinder, parameters choice of main components braking and channel settings.Key words: braking; brake drum; brake disc; hydroid pressure; Brake pipeII黑龙江工程学院本科生毕业设计目 录摘要Abstract第1章 绪论11.1 制动系统设计的意义31.2 制动系统研究现状31.3 制动系统设计内容4第2章 制动系统总体方案设计52.1 制动器的结构型式的选择52.2 制动驱动机构的结构型式的方案比较选择72.3 制动管路的多回路系统92.4 本章小结10第3章 制动器设计计算113.1 路宝汽车的主要技术参数113.2 制动系统的主要参数及其选择113.2.1 同步附着系数113.2.2 制动强度和附着系数利用率123.2.3 制动器最大的制动力矩133.3 制动器的结构参数143.3.1 鼓式制动器的结构参数143.3.2 盘式制动器的结构参数163.4 制动器的设计计算173.4.1 鼓式制动器摩擦片上的制动力矩173.4.2 盘式制动器制动块上的制动力矩213.4.3 制动器的效能因数223.5 摩擦衬片的磨损特性计算263.6 制动器的热容量和温升的核算263.7 驻车制动计算273.8 制动器主要零件的结构设计283.8.1 制动鼓283.8.2 制动蹄293.8.3 制动底板293.8.4 制动蹄的支承293.8.5 制动轮缸293.8.6 制动盘303.8.7 制动钳303.8.8 制动块303.8.9 摩擦材料303.8.10 制动摩擦衬片313.8.11 制动器间隙313.9 制动蹄支承销剪切应力计算323.10 本章小结34第4章 制动驱动机构的设计计算354.1 轮缸直径与工作容积354.1.1 盘式制动器直径与工作容积354.1.2 鼓式制动器直径与工作容积364.2 制动主缸直径与工作容积364.3 制动轮缸活塞宽度与缸筒的壁厚374.3.1 盘式制动轮缸活塞宽度与缸筒壁厚374.3.2 盘式制动器活塞宽度与缸筒壁厚384.4 制动主缸行程的计算384.5 制动主缸活塞宽度与缸筒的壁厚394.5.1 制动主缸活塞宽度394.5.2 制动主缸筒的壁厚394.6 制动踏板力与踏板行程394.7 真空助力器414.8 制动液的选择与使用424.9 制动力分配的调节装置434.9.1 感载比例阀434.10 本章小结44结论45参考文献46致谢47附录48黑龙江工程学院本科生毕业设计第1章 绪论1.1制动系统设计的意义汽车制动器是汽车制动系统的重要组成部分,是汽车行驶安全的重要部件之一.作为一种新型的制动部件,盘式制动器与传统的鼓式制动器比较,具有散热快、重量轻 、构造简单、调整方便、制动效果稳定、热稳定性好、耐高温性能好等优势,随着高速公路发展和车流密度增大,出现了频繁的交通事故。而盘式制动器,尤其是浮动钳盘式制动器以其优越的制动性能已得到了汽车制造厂家及用户的极大关注,有着非常好的发展前景。从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系统工作可靠的汽车,才能充分发挥其动力性能作为制动系重要组成部分之一的制动器在我国发展前景广阔,目前乘用车主要采用前盘后鼓式和全盘式制动器,20%的乘用车采用前盘后鼓式制动器,商用车主要采用全鼓式制动器,只有高档客车和有特殊需求的车辆才采用前盘后鼓式制动器和全盘式制动器。随着对汽车制动性能的提高,越来越多的先进电子制动技术得到采用。制动器作为制动系中直接作用制约汽车运动的一个关健装置,车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用,而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上。制动器是将汽车的动能以摩擦方式转化为热能并加以吸收的机构,不仅要按产生足够的制动力的条件,还要按能量容量和磨损寿命足够的条件来确定制动器。为确保制动稳定性可靠,热稳定性好,寿命长,造价低,现今的制动器产品无论从性能、结构方面,还是生产制造方式和操纵控制方面,都在发生着诸多的变化。它们大大地优化了制动器各方面的性能,从某种程度上看,这些变化也反映了汽车制动器的发展方向。制动器主要有摩擦式、液力式和电磁式等几种形式。电磁式制动器虽有作用滞后性好、易于连接而且街头可靠等优点,但因成本高,只在一部分总质量较大的商用车用车轮制动器或缓速器;液力式制动器一般只用作缓速器。目前广泛使用的仍为摩擦式制动器。在国内主要从事鼓式制动器总成的企业有万向钱潮、亚太机电、重庆红宇等一些企业。2004年前八家企业产量集中度达到85.4%。随着近几年汽车盘式制动器的发展,液压鼓式制动器目前只在一些比较低档的经济型轿车上在使用。根据慧聪汽车市场研究所最新的统计表明,2008年17月,我国乘用车中刹车制动器用鼓式制动器只占20%,并且鼓式制动器目前已经彻底退出前轮制动。自2000年以来,我国盘式制动器市场需求增长速度发展非常快。从中国汽车工业协会统计的情况来看,2000年我国盘式制动器的产量只有57.58万套,到2004年迅速增长到468.72万套,增长7倍多,年平均增长率高达68.9%,2007年增长至1000万套。过去5年里,我国盘式制动器应用的增长非常迅速。汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。盘式制动器的旋转元件是一个垂向安放且以两侧面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用于制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用;而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。 随着我国汽车工业技术的发展,特别是轿车工业的发展,合资企业的引进,国外先进技术的进入,汽车上采用盘式制动器配置正逐步在我国形成规模。特别是在提高整车性能、保障安全、提高乘车者的舒适性等方面都发挥了很大的作用, 预计未来几年,随着我国公路交通条件的改善,高等级公路的发展,新法则要求的实施,车辆性能的不断提高,盘式制动器作为新型的能提高汽车主动安全性的产品将会得到快速的推广和应用,有着广阔市场前景。现在汽车盘式制动器的研究和开发应注重的问题主要是:提高制动器的制动效能、防止尘污和锈蚀、减轻重量、简化结构、降低成本、向电子报警和智能化系统的发展,以及实用性更强与寿命更长等。1.2制动系统研究现状 汽车是现代交通工具中用得最多、最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 虽然近几年从德国大众、法国雷诺、美国通用等国外汽车引进了轿车,不少零配件的国产率也比较高,但引进的主要是总成和零配件,没有引进开发技术,至于轻型客货车的开发技术引进就更少了,所以我国自行开发轻型客货车及其轿车的能力,跟汽车发达国家相比差距还是很大。近年来我国出版过很多汽车制动方面的著作,但是从数量上还是不能满足汽车工业发展的要求。特别是在汽车制动器的开发和设计方面与发达国家相差很大,许多尖端技术还不能了解。所以对于研究设计制动器来说,在我国有着非常重要的影响。哈飞路宝是哈飞汽车继哈飞中意之后与意大利Pininfarina公司联合设计开发的一款两厢五门轿车,其特点:车身小巧、内饰外观精美、安全性能高、动力强劲、油耗低,排放根据需求可分别达到欧洲号与欧洲号标准。路宝汽车制动器是前轮盘式制动器,后轮鼓式制动器,相比四轮都采用盘式制动器,这种设计方式初衷是使其更经济。因为对路宝汽车的消费人群来说,选路宝本身就因为其优秀的性价比,所以需要为其设计经济实用的制动器。通过制动器的结构型式和设计参数对汽车安全性有直接影响.因此,制动器型式选择、设计参数选择及设计计算对汽车的整车设计极其重要。通过制动器设计熟悉汽车总成和零件设计。1.3制动系统设计内容(1)研究、确定制动制动驱动形式。(2)研究、确定制动系统的构成 1)设计制动系统示意图。 2)驻车制动采用的形式。 3)是否需要有辅助制动。(3)汽车必需制动力及其前后分配的确定 。(4) 确定制动器制动力、摩擦片寿命及构造、参数。 (5) 制动器零件设计及作图。 (6) 制动操纵系统设计。 (7) 管路设计及布置 第2章 制动系统总体方案设计 汽车制动系统总体方案设计,主要涉及制动器的结构型式选择,制动驱动机构的结构型式选择,制动管路布置结构型式的选择等三个方面。本章将就这三个方面的问题进行分析论证。2.1 制动器的结构型式的选择车轮制动器主要用于行车制动系统,有时也兼作驻车制动之用。制动器主要有摩擦式、液力式、和电磁式等三种形式。电磁式制动器虽有作用滞后性好、易于连接而且接头可靠等优点,但因成本太高,只在一部分总质量较大的商用车上用作车轮制动器或缓速器;液力式制动器一般只用缓速器。目前广泛使用的仍为摩擦式制动器2。摩擦式制动器按摩擦副结构不同,可以分为鼓式、盘式和带式三种。带式只用于中央制动器;鼓式和盘式应用最为广泛。鼓式制动器广泛应用于商用车,同时鼓式制动器结构简单、制造成本低。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的凸缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。现外束型鼓式制动器主要用于中央制动器的设计1。相对于鼓式制动器盘式制动器具有以下优点:(1)热稳定性好;(2)水稳定性好;(3)制动稳定性好;(4)制动力矩与汽车前进和后退等行驶状态无关;(5)在输出同样大小的制动力矩的条件下,盘式制动器的结构尺寸和质量比鼓式制动器的要小;(6)盘式制动器的摩擦衬块比鼓式制动器的摩擦衬片在磨损后更易更换,结构也比较简单,维修、保养容易;(7)制动盘与摩擦衬块间的间隙小,一次缩短了油缸活塞的操作时间,并使驱动机构的力传动比有增大的可能;(8)制动盘的热膨胀量不会像制动鼓热膨胀那样引起制动踏板行程损失,这也使得间隙自动调整机构的设计可以简化;(9)易于构成多回路制动驱动系统,使系统有较好的可靠性与安全性,以保证汽车在任何车速下各车轮都能均匀一致地平稳制动;(10)能方便地实现制动器磨损报警,能及时地更换摩擦衬片。作为一款微型车,出于制造维修成本以及制动效能等方面考虑,采用前盘后鼓式制动器。鼓式制动器可按其制动蹄的受力情况分类(见图2.1),它们的制动效能、制动鼓的受力平衡状况以及车轮旋转方向对制动效能的影响均不同2。 (a) (b) (c) (d) (e) (f)图2.1鼓式制动器简图(a)领从蹄式(凸轮张开);(b)领从蹄式(制动轮缸张开);(c)双领蹄式(非双向,平衡式);(d)双向双领蹄式;(e)单向增力式;(f)双向增力式制动蹄按其张开时的转动方向和制动鼓的旋转方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。领从蹄式制动器的效能和效能稳定性,在各式制动器中居中游;前进、倒退行驶的制动效果不变;结构简单,成本低;便于附装驻车制动驱动机构;易于调整蹄片之间的间隙。因此得到广泛的应用,特别是用于乘用车和总质量较小的商用车的后轮制动器2。路宝总质量较小,因此采用结构简单,成本低的领从蹄式鼓式制动器。按摩擦副中的固定摩擦元件的结构来分,盘式制动器分为钳盘制动器和全盘制动器两大类。全盘制动器的固定摩擦元件和旋转元件均为圆盘形,制动时各盘摩擦便面全部接触。这种制动器的散热性差,为此,多采用油冷式,结构复杂。前盘式制动器按制动钳的结构形式可分为固定钳盘和浮动钳盘两种。其中浮动前盘式制动器只在制动盘的一侧装油缸,其结构简单,造价低廉,易于布置,结构尺寸紧凑,可将制动器进一步移近轮毂。因此作为路宝车前制动器采用浮动前盘式制动器。2.2 制动驱动机构的结构型式的方案比较选择根据制动力源的不同,制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式和气压-液压式的区别,如表2.1所示。表2.1 制动驱动机构的结构型式制动力源力的传递方式用途型式制动力源工作介质型式工作介质简单制动系(人力制动系)司机体力机械式杆系或钢丝绳仅限于驻车制动液压式制动液部分微型汽车的行车制动动力制动系气压动力制动系发动机动力空气气压式空气中、重型汽车的行车制动气压-液压式空气、制动液液压动力制动系制动液液压式制动液伺服制动系真空伺服制动系司机体力与发动机动力空气液压式制动液轿车,微、轻、中型汽车的行车制动气压制动系空气液压伺服制动系制动液简单制动单靠驾驶员施加的踏板力或手柄力作为制动力源,故亦称人力制动。其中,又分为机械式和液压式两种。机械式完全靠杆系传力,由于其机械效率低,传动比小,润滑点多,且难以保证前、后轴制动力的正确比例和左、右轮制动力的均衡,所以在汽车的行车制动装置中已被淘汰。但因其结构简单,成本低,工作可靠(故障少),还广泛地应用于中、小型汽车的驻车制动装置中2。液压式简单制动(通常简称为液压制动)用于行车制动装置。液压制动的优点是:作用滞后时间较短(0.10.3s);工作压力高(可达1020MPa),因而轮缸尺寸小,可以安装在制动器内部,直接作为制动蹄的张开机构(或制动块的压紧机构),而不需要制动臂等传动件,使之结构简单,质量小;机械效率较高(液压系统有自润滑作用)。液压制动的主要缺点是过度受热后,部分制动液汽化,在管路中形成气泡,严重影响液压传输,使制动系效能降低,甚至完全失效。液压制动曾广泛应用在轿车、轻型货车及一部分中型货车上。动力制动即利用发动机的动力转化而成,并表现为气压或液压形式的势能作为汽车制动的全部力源。驾驶员施加于踏板或手柄上的力,仅用于回路中控制元件的操纵。因此,简单制动中的踏板力和踏板行程之间的反比例关系,在动力制动中便不复存在,从而可使踏板力较小,同时又有适当的踏板行程。气压制动是应用最多的动力制动之一。其主要优点为操纵轻便、工作可靠、不易出故障、维修保养方便;此外,其气源除供制动用外,还可以供其它装置使用。其主要缺点是必须有空气压缩机、贮气筒、制动阀等装置,使结构复杂、笨重、成本高;管路中压力的建立和撤除都较慢,即作用滞后时间较长(0.3s0.9s),因而增加了空驶距离和停车距离,为此在制动阀到制动气室和贮气筒的距离过远的情况下,有必要加设气动的第二级元件继动阀(亦称加速阀)以及快放阀;管路工作压力低,一般为0.5MPa0.7MPa,因而制动气室的直径必须设计得大些,且只能置于制动器外部,再通过杆件和凸轮或楔块驱动制动蹄,这就增加了簧下质量;制动气室排气有很大噪声。气压制动在总质量8t以上的货车和客车上得到广泛应用。由于主、挂车的摘和挂都很方便,所以汽车列车也多用气压制动。用气压系统作为普通的液压制动系统主缸的驱动力源而构成的气顶液制动,也是动力制动。它兼有液压制动和气压制动的主要优点,因气压系统管路短,作用滞后时间也较短。但因结构复杂、质量大、成本高,所以主要用在重型汽车上。全液压动力制动,用发动机驱动液压泵产生的液压作为制动力源,有闭式(常压式)与开式(常流式)两种。开式(常流式)系统在不制动时,制动液在无负荷情况下由液压泵经制动阀到贮液罐不断循环流动;而在制动时,则借阀的节流而产生所需的液压并传入轮缸。闭式回路因平时总保持着高液压,对密封的要求较高,但对制动操纵的反应比开式的快。在液压泵出故障时,开式的即不起制动作用,而闭式的还有可能利用蓄能器的压力继续进行若干次制动。全液压动力制动除了有一般液压制动系的优点以外,还有制动能力强、易于采用制动力调节装置和防滑移装置,即使产生汽化现象也没有什么影响等好处。但结构相当复杂,精密件多,对系统的密封性要求也较高,目前应用并不广泛。各种形式的动力制动在动力系统失效时,制动作用即全部丧失。伺服制动的制动能源是人力和发动机并用。正常情况下其输出工作压力主要由动力伺服系统产生,在伺服系统失效时,还可以全靠人力驱动液压系统以产生一定程度的制动力,因而从中级以上的轿车到重型货车,都广泛采用伺服制动。按伺服力源不同,伺服制动有真空伺服制动、空气伺服制动和液压伺服制动三类。真空伺服制动与空气伺服制动的工作原理基本一致,但伺服动力源的相对压力不同。真空伺服制动的伺服用真空度(负压)一般可达0.05MPa0.07MPa;空气伺服制动的伺服气压一般能达到0.6MPa0.7MPa,故在输出力相同的条件下,空气伺服气室直径比真空伺服气室的小得多。但是,空气伺服系统其它组成部分却较真空伺服系统复杂得多。真空伺服制动多用于总质量在1.1t1.35t以上的轿车和装载质量在6t以下的轻、中型货车,空气伺服制动则广泛用于装载质量为6t12t的中、重型货车,以及少数几种高级轿车上。本次设计采用真空助力式伺服制动系统。2.3 制动管路的多回路系统为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应是双管路的。应将汽车的全部行车制动器的液压或气压管路分成两个或更多个相互独立的回路,以便当一个回路失效后,其他完好的回路仍能可靠地工作。根据GB 72582004规定制动系统部分管路失效的情况下,应能有一定的制动力。 (a) (b) (c) (d) (e)1双腔制动主缸;2双回路系统的一个分路;3双回路的另一分路图2.2双轴汽车液压双回路系统的5种分路方案图2.2为双轴汽车的液压式制动驱动机构的双回路系统的五种分路方案图。选择分路方案时主要是考虑其制动效能的损失程度、制动力的不对称情况和回路系统的复杂程度等。图2.2(a)为前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,简称型。其特点是管路布置最为简单,可与传统的单轮缸(或单制动气室)鼓式制动器相配合,成本较低。在各类汽车上都有采用,但在货车上用得最广泛。这一分路方案若后轮制动管路失效,则一旦前轮抱死就会失去转弯制动能力。对于前驱动的轿车,当前轮管路失效而仅由后轮制动时,制动效能将显著降低并小于正常情况下的一半,另外由于后桥负荷小于前轴,则过大的踏板力会使后轮抱死导致汽车甩尾。图2.2(b)为前、后轮制动管路呈对角连接的两个独立的回路系统,即前轴的一侧车轮制动器与后桥的对侧车轮制动器同属一个回路,称交叉型,简称X型。其特点是结构也很简单,一回路失效时仍能保持50%的制动效能,并且制动力的分配系数和同步附着系数没有变化,保证了制动时与整车负荷的适应性。此时前、后各有一侧车轮有制动作用使制动力不对称,导致前轮将朝制动起作用车轮的一侧绕主销转动,使汽车失去方向稳定性。所以具有这种分路方案的汽车,其主销偏移距应取负值(至20mm),这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性,所以多用于中、小型轿车。图2.2(c)的每侧前制动器的半数轮缸与全部后制动器轮缸构成一个独立的回路;而两前制动器的另半数轮缸构成另一回路。可看成是一轴半对半个轴的分路型式,简称HI型。图2.2(e)的两个独立的回路均由每个前、后制动器的半数缸所组成,即前、后半个轴对前、后半个轴的分路型式。简称HH型。这种型式的双回路系统的制动效能最好。HI,LL,HH型的结构均较复杂。LL型与HH型在任一回路失效时,前、后制动力比值均与正常情况下相同,剩余总制动力LL型可达正常值的80%而HH型约为50%左右。HI型单用回路3(见图2.2(c),即一轴半)时剩余制动力较大,但此时与LL型一样,在紧急制动时后轮极易先抱死。本次设计采用图2.2(a)所示前、后轮制动管路各成独立的的回路系统符合了GB 72582004对制动管路布置的要求。2.4 本章小结本章主要对路宝汽车制动系统的总体设计进行了比较和论证选择,通过对制动器的结构型式、制动驱动机构的结构型式,制动管路布置的结构型式三个方面对制动系统进行了整体上的选择。第3章 制动器设计计算 车轮制动器是行车制动系的重要部件。按GB7258-2004的规定,行车制动必须作用在车辆的所有的车轮上。3.1 路宝汽车的主要技术参数在制动器设计中需预先给定的整车参数如表3.1所示表3.1 路宝整车参数已知参数路宝轴距L(mm)2335整车整备质量(Kg)895满载质量(Kg)1270满载时质心距前轴中心线的距离(mm)1320满载时质心距后轴中心线的距离(mm)1010空载时质心高度(mm)470满载时质心高度(mm)370车轮工作半径(m)0.272轮 胎165/65 R133.2 制动系统的主要参数及其选择3.2.1 同步附着系数对于前后制动器制动力为固定比值的汽车,只有在附着系数等于同步附着系数的路面上,前、后车轮制动器才会同时抱死,当汽车在不同值的路面上制动时,可能有以下三种情况4。1、当时制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;2、当时制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性;3、当时制动时汽车前、后轮同时抱死,这时也是一种稳定工况,但也丧失了转向能力。为了防止汽车制动时前轮失去转向能力和后轮产生侧滑,希望在制动过程中,在即将出现车轮抱死但尚无任何车轮抱死时的制动减速度为该车可能产生的最高减速度。分析表明,汽车在同步附着系数的路面上制动(前、后车轮同时抱死)时,其制动减速度为,即,为制动强度。在其他附着系数的路面上制动时,达到前轮或后轮即将抱死的制动强度。这表明只有在的路面上,地面的附着条件才可以得到充分利用。现代的道路条件大为改善,汽车行驶速度也大为提高,因而汽车因制动时后轮先抱死的后果十分严重。由于车速高,它不仅会引起侧滑甚至甩尾会发生掉头而丧失操纵稳定性,因此后轮先抱死的情况是最不希望发生的,所以各类轿车和一般载货汽车的值均有增大趋势。国外有关文献推荐满载时的同步附着系数:轿车取;货车取为宜。参考与同类车型的值,取。3.2.2 制动力矩分配系数及制动强度根据选定的同步附着系数,已知: (3.2)式中:汽车轴距,mm; 制动力分配系数; 满载时汽车质心距前轴中心的距离;满载时汽车质心距后轴中心的距离; 满载时汽车质心高度。求得: 进而求得:q=0.683.2.3 制动器最大的制动力矩为保证汽车有良好的制动效能和稳定性,应合理地确定前、后轮制动器的制动力矩。最大制动力是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力 成正比。所以,双轴汽车前、后车轮附着力同时被充分利用或前、后轮同时抱死的制动力之比为: (3.3)式中:汽车质心离前、后轴的距离; 同步附着系数; 汽车质心高度。制动器所能产生的制动力矩,受车轮的计算力矩所制约,即 (3.4)式中:前轴制动器的制动力,; 后轴制动器的制动力,; 作用于前轴车轮上的地面法向反力;作用于后轴车轮上的地面法向反力;车轮的有效半径。对于选取较大值的各类汽车,应从保证汽车制动时的稳定性出发,来确定各轴的最大制动力矩。当时,相应的极限制动强度,故所需的后轴和前轴制动力矩为 (3.5) (3.6)式中:该车所能遇到的最大附着系数; 制动强度; 车轮有效半径。Nm Nm单个车轮制动器应有的最大制动力矩为 、的一半,为611.36Nm 和542.14Nm。3.3 制动器的结构参数3.3.1 鼓式制动器的结构参数1、制动鼓直径 轮胎规格为165/65 R13 轮辋为13in 表3.2 制动鼓内径轮辋直径 英寸1213141516制动鼓内径轿车180200240260-货车220240260300320查表3.2得制动鼓内径D=200mmD=330mm根据轿车在0.640.74之间选取取=0.64D=211.2mm,2、制动蹄摩擦片宽度、制动蹄摩擦片的包角和单个制动器摩擦面积由制动鼓工作直径及制动蹄片宽度尺寸系列的规定,选取制动蹄摩擦片宽度mm;摩擦片厚度mm。摩擦衬片的包角通常在范围内选取,试验表明,摩擦衬片包角时磨损最小,制动鼓的温度也最低,而制动效能则最高。再减小虽有利于散热,但由于单位压力过高将加速磨损。包角也不宜大于,因为过大不仅不利于散热,而且易使制动作用不平顺,甚至可能发生自锁。综上所述选取领蹄,从蹄单个制动器摩擦面积: (3.7)式中:单个制动器摩擦面积,mm2制动鼓内径,mm; 制动蹄摩擦片宽度,mm; 分别为两蹄的摩擦衬片包角,()。cm2表3.3 制动器衬片摩擦面积汽车类别汽车总质量t单个制动器摩擦面积cm2轿车客车与货车(多为)(多为)由表3.3数据可知设计符合要求。图3.1鼓式制动器的主要几何参数3、摩擦衬片起始角摩擦衬片起始角如图3.1所示。通常是将摩擦衬片布置在制动蹄外缘的中央,并令。领蹄包角从蹄包角4、张开力的作用线至制动器中心的距离在满足制动轮缸布置在制动鼓内的条件下,应使距离(见图3.4)尽可能地大,以提高其制动效能。初步设计时可暂取,根据设计时的实际情况取mm5、制动蹄支销中心的坐标位置与如图3.4所示,制动蹄支销中心的坐标尺寸尽可能地小设计时常取mm,以使尽可能地大,初步设计可暂取,根据设计的实际情况取mm。 6、摩擦片摩擦系数选择摩擦片时,不仅希望起摩擦系数要高些,而且还要求其热稳定性好,受温度和压力的影响小。不宜单纯的追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求。后者对蹄式制动器是非常重要的各种制动器用摩擦材料的摩擦系数的稳定值约为,少数可达0.7。一般说来,摩擦系数越高的材料,其耐磨性能越差。所以在制动器设计时,并非一定要追求最高摩擦系数的材料。当前国产的制动摩擦片材料在温度低于250时,保持摩擦系数=0.350.4已不成问题。因此,在假设的理想条件下计算制动器的制动力矩,取=0.3可使计算结果接近实际值。另外,在选择摩擦材料时,应尽量采用减少污染和对人体无害的材料。3.3.2 盘式制动器的结构参数1、制动盘直径D制动盘直径D希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。但制动盘的直径D受轮辋直径的限制,通常,制动盘的直径D选择轮辋直径的7079,而总质量大于2t的汽车应取上限D=0.33074%=0.24m取制动盘直径mm2、制动盘厚度h制动盘厚度h直接影响着制动盘质量和工作时的温升。为使质量不致太大,制动盘厚度应取得适当小些;为了降低制动工作时的温升,制动盘厚度又不宜过小。实心盘的厚度选择10mm20mm,选择制动盘厚度为h=10mm。3、摩擦衬块工作面积A 推荐根据制动器摩擦衬块单位面积占有的汽车质量在范围内选取且工作表面的面积仅为制动盘面积的126,同类车型比较选取面积为60。4、摩擦衬块内半径与外半径推荐摩擦衬块的外半径与内半径的比值不大于1.5。若此比值偏大,工作时摩擦衬块外缘与内缘的圆周速度相差较大,则其磨损就会不均匀,接触面积将减小,最终会导致制动力矩变化大。取摩擦衬块外半径,内半径则摩擦衬块半径选取符合要求。3.4 制动器的设计计算3.4.1鼓式制动器摩擦片上的制动力矩在计算鼓式制动器时,必须建立制动蹄对制动鼓的压紧力与所产生的制动力矩之间的关系。为计算有一个自由度的制动蹄片上的力矩,在摩擦衬片表面上取一横向单元面积,并使其位于与轴的交角为处,单元面积为。,其中b为摩擦衬片宽度,R为制动鼓半径,为单元面积的包角,如图3.2所示。 图3.2 支承销式制动蹄 由制动鼓作用在摩擦衬片单元面积的法向力为: (3.8)而摩擦力产生的制动力矩为 在由至区段上积分上式,得 (3.9)当法向压力均匀分布时, (3.10)图3.3 张开力计算用图增势蹄产生的制动力矩可表达如下: (3.11)式中:单元法向力的合力;摩擦力的作用半径(见图3.3)。如果已知制动蹄的几何参数和法向压力的大小,便可算出蹄的制动力矩。为了求得力与张开力的关系式,写出制动蹄上力的平衡方程式: (3.12)式中:轴与力的作用线之间的夹角;支承反力在工:轴上的投影。解式(3.8),得 (3.13)对于增势蹄可用下式表示为 (3.14)对于减势蹄可类似地表示为 (3.15)图3.4 制动力矩计算用图为了确定,及,必须求出法向力N及其分量。如果将(见图3.4)看作是它投影在轴和轴上分量和的合力,则有: (3.16)因此对于领蹄: (3.17)式中:。考虑到 (3.18)则有 (3.19) 由于设计和相同,因此和值也近似取相同的。对具有两蹄的制动器来说,其制动鼓上的制动力矩等于两蹄摩擦力矩之和,即 (3.20)由式(3.14)和式(3.15)知对于液压驱动的制动器来说,所需的张开力为Nm (3.21) 计算蹄式制动器时,必须检查蹄有无自锁的可能,由式(3.14)得出自锁条件。当该式的分母等于零时,蹄自锁: (3.22) (3.23)成立,不会自锁。由式(3.24)和式(3.29)可求出领蹄表面的最大压力为: (3.24)=2.10pa式中:,见图3.3;,见图3.4;摩擦衬片宽度;摩擦系数。因此鼓式制动器参数选取符合设计要求。3.4.2 盘式制动器制动块上的制动力矩盘式制动器的计算用简图如图3.5所示,今假设衬块的摩擦表面与制动盘接触良好,且各处的单位压力分布均匀,则盘式制动器的制动力矩为 (3.25)式中:摩擦系数;N单侧制动块对制动盘的压紧力(见图3.8);R作用半径。 图3.5 盘式制动器计算用图 图3.6 钳盘式制动器作用半径计算用图对于常见的扇形摩擦衬块,如果其径向尺寸不大,取R为平均半径或有效半径已足够精确。如图3.6所示,平均半径为 式中 ,扇形摩擦衬块的内半径和外半径。根据图3.6,在任一单元面积只上的摩擦力对制动盘中心的力矩为,式中q为衬块与制动盘之间的单位面积上的压力,则单侧制动块作用于制动盘上的制动力矩为 单侧衬块给予制动盘的总摩擦力为 得有效半径为 令,则有 (3.26) 因,故。当,。但当m过小,即扇形的径向宽度过大,衬块摩擦表面在不同半径处的滑磨速度相差太大,磨损将不均匀,因而单位压力分布将不均匀,则上述计算方法失效。由求得:N3.4.3 制动器效能因数制动器因数又称为制动器效能因数。其实质是制动器在单位输入压力或力的作用下所能输出的力或力矩,用于评比不同结构型式的制动器的效能。制动器因数可定义为在制动鼓或制动盘的作用半径上所产生的摩擦力与输入力之比,即 (3.27)式中:制动器效能因数制动器的摩擦力矩; 制动鼓或制动盘的作用半径; 输入力,一般取加于两制动蹄的张开力(或加于两制动块的压紧力)的平均值为输入力。 对于鼓式制动器,设作用于两蹄的张开力分别为、,制动鼓内圆柱面半径即制动鼓工作半径为,两蹄给予制动鼓的摩擦力矩分别为和,则两蹄的效能因数即制动蹄因数分别为: (3.28) (3.29)整个鼓式制动器的制动因数则为 (3.30)当时,则 (3.31)蹄与鼓间作用力的分布,其合力的大小、方向及作用点,需要较精确地分析、计算才能确定。今假设在张力P的作用下制动蹄摩擦衬片与鼓之间作用力的合力N如图3.7所示作用于衬片的B点上。这一法向力引起作用于制动蹄衬片上的摩擦力为为摩擦系数。a,b,c,h,R 及为结构尺寸,如图3.7所示。图3.7 鼓式制动器的简化受力图对领蹄取绕支点A的力矩平衡方程,即 (3.32)由上式得领蹄的制动蹄因数为 (3.33)当制动鼓逆转时,上述制动蹄便又成为从蹄,这时摩擦力的方向与图3.7所示相反,用上述分析方法,同样可得到从蹄绕支点A的力矩平衡方程,即 (3.34) (3.35)由式(3-33)可知:当趋近于占时,对于某一有限张开力,制动鼓摩擦力趋于无穷大。这时制动器将自锁。自锁效应只是制动蹄衬片摩擦系数和制动器几何尺寸的函数。通过上述对领从蹄式制动器制动蹄因数的分析与计算可以看出,领蹄由于摩擦力对蹄支点形成的力矩与张开力对蹄支点的力矩同向而使其制动蹄因数值大,而从蹄则由于这两种力矩反向而使其制动蹄因数值小。两者在=0.30.35范围内,当张开力时,相差达3倍之多。就整个鼓式制动器而言,也在不同程度上存在以为表征的效能本身与其稳定性之间的矛盾。由于盘式制动器的制动器因数对摩擦系数的导数为常数,因此其效能稳定性最好。下面对支承销式领从蹄制动器的制动因数进行分析计算。 单个领蹄的制动蹄因数BFTl (3.36) 单个从蹄的制动蹄因数BFT2 (3.37)以上两式中: 以上各式中有关结构尺寸参数见图3.2。 整个制动器因数为故符合要求。3.5 摩擦衬片的磨损特性计算摩擦衬片的磨损,与摩擦副的材质、表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。汽车的制动过程是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则衬片的磨损愈严重。制动器的能量负荷常以其比能量耗散率作为评价指标。比能量耗散率又称为单位功负荷或能量负荷,它表示单位摩擦面积在单位时间内耗散的能量,其单位为W/mm2。双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别为 (3.38)式中:汽车回转质量换算系数;汽车总质量;,汽车制动初速度与终速度,m/s;计算时总质量3.5t以上的货车取=18m/s;制动减速度,m/s2,计算时取=0.6;制动时间,s;Al,A2前、后制动器衬片的摩擦面积;制动力分配系数。在紧急制动到时,并可近似地认为,则有 (3.39) 鼓式制动器的比能量耗损率以不大于1.8W/mm2为宜,但当制动初速度低于式(3.40)下面所规定的值时,则允许略大于1.8W/mm2,盘式制动器比能量耗损率以不大于6.0W/mm2为宜。比能量耗散率过高,不仅会加速制动衬片的磨损,而且可能引起制动鼓或盘的龟裂。W/mm2 W/mm2因此,符合磨损和热的性能指标要求。3.6 制动器的热容量和温升的核算应核算制动器的热容量和温升是否满足如下条件 (3.40)式中:各制动鼓的总质量;与各制动鼓相连的受热金属件(如轮毂、轮辐、轮辋等)的总质量;制动鼓材料的比热容,对铸铁c=482 J/(kgK),对铝合金c=880 J/(kgK);与制动鼓(盘)相连的受热金属件的比热容;制动鼓(盘)的温升(一次由=30km/h到完全停车的强烈制温升不应超过15);L满载汽车制动时由动能转变的热能,因制动过程迅速,可以认为制动产生的热能全部为前、后制动器所吸收,并按前、后轴制动力的分配比率分配给前、后制动器,即 (3.41)式中 满载汽车总质量;汽车制动时的初速度;汽车制动器制动力分配系数。盘式制动器:鼓式制动器:由以上计算校核可知符合热容量和温升的要求。3.7 驻车制动计算图3.8为汽车在上坡路上停驻时的受力情况,由此可得出汽车上坡停驻时的后轴车轮的附着力为: (3.42)同样可求出汽车下坡停驻时的后轴车轮的附着力为: (3.43) 图3.8 汽车在坡路上停驻时的受力简图根据后轴车轮附着力与制动力相等的条件可求得汽车在上坡路和下坡路上停驻时的坡度极限倾角,即由 (3.44)求得汽车在上坡时可能停驻的极限上坡路倾角为 (3.45)汽车在下坡时可能停驻的极限下坡路倾角为 (3.46)一般对轻型货车要求不应小于16%20%,汽车列车的最大停驻坡度约为12左右。为了使汽车能在接近于由上式确定的坡度为的坡路上停驻,则应使后轴上的驻车制动力矩接近于由所确定的极限值 (因),并保证在下坡路上能停驻的坡度不小于法规规定值。单个后轮驻车制动器的制动上限为Nm3.8 制动器主要零件的结构设计3.8.1 制动鼓制动鼓应具有非常好的刚性和大的热容量,制动时温升不应超过极限值。制动鼓材料应与摩擦衬片相匹配,以保证具有高的摩擦系数并使工作表面磨损均匀。制动鼓相对于轮毂的对中是圆柱表面的配合来定位,并在两者装配紧固后精加工制动鼓内工作表面,以保证两者的轴线重合。两者装配后还需进行动平衡。其许用不平衡度对轿车为15Ncm20 Ncm;对货车为30 Ncm40 Ncm。微型轿车要求其制动鼓工作表面的圆度和同轴度公差0.03mm,径向跳动量0.05mm,静不平衡度1.5N.cm。制动鼓壁厚的选取主要是从其刚度和强度方面考虑。壁厚取大些也有利于增大其热容量,但试验表明,壁厚由ll mm增至20 mm时,摩擦表面的平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车为7mm12mm;中、重型载货汽车为13mm18mm。制动鼓在闭口一侧外缘可开小孔,用于检查制动器间隙。本次设计采用的材料是灰铸铁HT200厚为8mm。3.8.2 制动蹄轿车和轻型、微型货车的制动蹄广泛采用T型钢辗压或钢板冲压焊接制成;大吨位货车的制动蹄则多用铸铁、铸钢或铸铝合金制成。制动蹄的断面形状和尺寸应保证其刚度好,但小型车钢板制的制动蹄腹板上有时开有一、两条径向槽,使蹄的弯曲刚度小些,以便使制动蹄摩擦衬片与鼓之间的接触压力均匀,因而使衬片磨损较为均匀,并减少制动时的尖叫声。重型汽车制动蹄的断面有工字形、山字形和字形几种。制动蹄腹板和翼缘的厚度,轿车的约为35mm;货车的约为58mm。摩擦衬片的厚度,轿车多用4.55mm;货车多在8mm以上。衬片可以铆接或粘接在制动蹄上,粘接的允许其磨损厚度较大,但不易更换衬片;铆接的噪声较小。因此,本设计制动蹄采用热轧45号钢钢板冲压焊接制成,制动蹄腹板和翼缘的厚度分别取5mm和4mm。3.8.3 制动底板制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制动底板承受着制动器工作时的制动反力矩,故应有足够的刚度。为此,由钢板冲压成形的制动底板都具有凹凸起伏的形状。刚度不足会导致制动力矩减小,踏板行程加大,衬片磨损也不均匀。因此,本设计制动底板采用热轧45号钢钢板冲压成形,制动底板的厚度取3mm。3.8.4 制动蹄的支承 二自由度制动蹄的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。例如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH 37012)或球墨铸铁(QT 40018)件。青铜偏心轮可保持制动蹄腹板上的支承孔的完好性并防止这些零件的腐蚀磨损。具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时在制动底板上附加一压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。本设计为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,采用支承销。3.8.5 制动轮缸是液压制动系采用的活塞式制动蹄张开机构,其结构简单,在车轮制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸筒为通孔,需搪磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插入槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处的橡胶皮碗密封。多数制动轮缸有两个等直径活塞;少数有四个等直径活塞;双领蹄式制动器的两蹄则各用一个单活塞制动轮缸推动。由于采用的是领从蹄式的制动器,缸体材料采用HT250的铸铁,两个活塞推动。3.8.6 制动盘 制动盘一般由珠光体灰铸铁制成,其结构形状有平板形和礼帽形两种。后一种的圆柱部分长度取决于布置尺寸。为了改善冷却,有的钳盘式制动器的制动盘铸成中间有径向通风槽的双层盘,可大大增加散热面积,但盘的整体厚度较大。制动盘的工作表面应光滑平整。两侧表面不平行度不应大于 0.008mm,并且盘面摆差不应大于 0.1mm。本设计制动盘厚度10mm且考虑为经济车型选用实心盘。 3.8.7 制动钳 制动钳由可锻铸铁 K TH37012 或球墨铸铁 QT40018 制造, 也有用轻合金制造的,可做成整体的,也可做成两个由螺栓连接。其外缘留有开口,以便不必拆下制动钳便可检查或更换制动块。制动钳体应有高的强度和刚度。一般多在钳体中加工出制动油缸,也有将单独制造的油缸装嵌入钳体中的。为了减少传给制动液的热量,多将杯形活塞的开口端顶靠制动块的背板。活塞由铸铝合金或钢制造。为了提高耐磨损性能,活塞的工作表面进行镀铬处理。 3.8.8 制动块 制动块由背板和摩擦衬块构成,两者直接压嵌在一起。衬块多为扇面形,也有矩形、正方形或长圆形的。活塞应能压住尽量多的制动块面积,以免衬块发生卷角而引起尖叫声。制动块背板由钢板制成。许多盘式制动器装有衬块磨损达极限时的警报装,以便及时更换摩擦衬片。制动块的厚度取14mm。3.8.9 摩擦材料制动摩擦材料应具有高而稳定的摩擦系数,抗热衰退性能好,不能在温度升到某一数值后摩擦系数突然急剧下降;材料的耐磨性好,吸水率低,有较高的耐挤压和耐冲击性能;制动时不产生噪声和不良气味,应尽量采用少污染和对人体无害的材料。目前在制动器中广泛采用着模压材料,它是以石棉纤维为主并与树脂粘结剂、调整摩擦性能的填充剂(由无机粉粒及橡胶、聚合树脂等配成)与噪声消除剂(主要成分为石墨)等混合后,在高温下模压成型的。模压材料的挠性较差,故应按衬片规格模压,其优点是可以选用各种不同的聚合树脂配料,使衬片具有不同的摩擦性能和其他性能。各种摩擦材料摩擦系数的稳定值约为0.30.5,少数可达0.7。设计计算制动器时一般取0.30.35。选用摩擦材料时应注意,一般说来,摩擦系数愈高的材料其耐磨性愈差8。3.8.10 制动摩擦衬片在GB 5763-1998汽车用制动器衬片中,将制动摩擦衬片按照用途分成4类,其中,第1类做为驻车制动器使用;第2类为微型、轻型汽车鼓式制动器使用;第3类为中重型汽车的鼓式制动器使用;第4类为盘式制动器使用17。其具体摩擦性能见表3.4表3.4 汽车制动器摩擦衬片的摩擦性能类别项 目试验温度1001502002503003501类摩擦系数0.300.700.250.700.200.70指定摩擦系数的允许偏差0.100.120.12磨损率(V),107cm3/(Nm)1.002.003.002类摩擦系数0.250.650.250.700.200.700.150.70指定摩擦系数的允许偏差0.080.100.120.12磨损率(V),107cm3/(Nm)0.500.701.002.003类摩擦系数0.250.650.250.700.250.700.200.700.150.70指定摩擦系数的允许偏差0.080.100.120.120.14磨损率(V),107cm3/(Nm)0.500.701.001.503.004类摩擦系数0.250.650.250.700.250.700.250.700.250.700.200.70指定摩擦系数的允许偏差0.080.100.120.120.140.14磨损率(V),107cm3/(Nm)0.500.701.001.502.503.503.8.11 制动器间隙制动鼓与摩擦衬片之间在未制动的状态下应有工作间隙,以保证制动鼓能自由转动。一般鼓式制动器的设定间隙为0.20.5mm,盘式制动器的为0.10.3mm;此间隙的存在会导致踏板或手柄的行程损失,因而间隙量应尽量小。考虑到在制动过程中摩擦副可能产生机械变形和热变形,因此制动器在冷却状态下应有的间隙应通过试验来确定。另外,制动器在工作过程中会因为摩擦衬片的磨损而加大,因此制动器必须设有间隙调整机构。在制动轮缸上采取措施实现工作间隙的自动调整,如图3.14所示。用以限定不制动时制动蹄内极限位置的限位摩擦环1装在轮缸活塞2内端的环槽中或借矩形断面螺纹旋装在活塞内端。限位摩擦环是一个有切槽的弹性金属环,压装入轮缸后与缸壁之间的摩擦力可打400。活塞上的环槽或螺旋槽的宽度大于限位摩擦环厚度,活塞相对于限位摩擦环的最大轴向位移量即为两者之间的间隙。间隙应等于在制动器间隙设定的标准时,施行完全制动时所需的轮缸活塞行程5。不制动时,制动蹄回位弹簧只能将制动蹄向内拉到轮缸活塞与限位摩擦环外端面接触为止,因为回位弹簧的拉力远远不足以克服摩擦限位环与缸壁间的摩擦力。此时如图3.9所示,间隙存在于活塞与限位摩擦环内端面之间1限位摩擦环;2活塞;3制动轮缸图3.9制动鼓与蹄间隙的自动调整装置制动时,轮缸活塞外移。若制动器间隙正好等于设定值,则当活塞移动到与限位摩擦环内端面接触(即间隙消失)时,制动器间隙应以消失,并且蹄鼓已压紧到足以产生最大制动力矩的程度。若制动器间隙有与种种原因增大到超过设定值时,则活塞外移到=0时仍不能实现完全制动。但只要轮缸液压达到0.8,即能将活塞连同限位摩擦环继续推出,直到实现完全制动。这样,在解除制动时,活塞随制动蹄向后移动到与处于新位置的限位摩擦环与缸壁之间这一不可逆转的轴向相对位移,补偿了制动器的过量间隙。3.9 制动蹄支承销剪切应力计算在计算得制动蹄片上的法向力,制动力矩及张开力后,可根据图求得支承销的支承力及支承销的剪切应力如下: (3.47)式中:支承销的截面积。也可以用下述的简化方法求得:如图3.10所示,假设制动蹄与制动鼓之间的作用力的合力作用点位于制动蹄摩擦衬片的工作表面上,其法向合力与支承销的反力分别平行,如图3.10所示。对两蹄分别绕中心点取矩,得 (3.48)图3.10 制动蹄支承销剪切应力计算图一般来说,的值总要大于的值,故仅计算领蹄的支承销的剪切应力即可: (3.49)式中:见图3.10; 支承销的截面积; 摩擦系数; 许用剪切应力。由式(3.9)知: 因此由式(3.49)知 支承销采用45号钢制成,其许用剪切应力=2545MPa9,因此符合剪切应力要求。 3.10 本章小结本章是全文的重点内容,首先根据汽车的一些数据参数对制动器的制动力分配系数,同步附着系数进行了设计计算。在知道汽车的最大附着系数以后对车辆的制动强度,制动器最大制动力矩进行了分析,对制动器因数与制动蹄因数进行了介绍分析。在有关的整车总布置参数和制动器的结构型式确定后,即可参考已有的同类等级汽车的同类制动器,对制动器的结构参数进行初选。经过设计初步选取了制动鼓半径;制动蹄摩擦衬片包角及宽度;摩擦衬片起始角;张开力的作用线至制动器中心的距离;制动蹄支销中心的坐标位置与;制动盘的半径R;衬块的面积等制动器的基本参数。经过对制动蹄摩擦面的压力分布规律及径向变形规律的分析,结合GB 7258-2004中对汽车制动性能的要求,在求出制动力矩后,计算出了张开力。而后对制动器的制动器因数进行了计算,对摩擦衬片的磨损特性进行了校核。对制动器的热容量和升温进行了核算。第4章 制动驱动机构的设计计算为了确定制动主缸和轮缸直径、制动踏板上的力、踏板行程、踏板机构传动比以及采用增压或助力装置的必要性,必须进行如下的设计计算。4.1 轮缸直径与工作容积为了确定制动主缸及制动轮缸的直径、制动踏板力与踏板行程、踏板机构的、传动比,以及说明采用增压助力装置的必要性,必须进行如下的设计计算。制动轮缸对制动体的作用力与轮缸直径及制动轮缸中的液压压力之间有如下关系式: (4.1)式中:考虑制动力调节装置作用下的轮缸或管路液压,8MPa 12MPa。制动管路液压在制动时一般不超过10MPa12MPa,对盘式制动器可再高些。压力越高则轮缸直径就越小,但对管路尤其是制动软管厦管接头则提出了更高的要求,对软管的耐压性、强度以及接头的密封性的要求就更加严格9。轮缸直径应在GB 752487标准规定的尺寸系列中选取,轮缸直径的尺寸系列为14.5,16,17.5,19,20.5,22,(22.22),(23.81),24,(25.40),26,28,(28.58),30,32,35,38,42,46,50,56mm。4.1.1 盘式制动器制动轮缸直径与工作容积根据前面算得的结果:求: mm (4.2)由此,选取制动轮缸的直径mm一个轮缸的工作容积 (4.3)式中:一个轮缸活塞的直径; 轮缸的活塞数目; 一个轮缸活塞在完全制动时的行程: (4.4)在初步设计时,对鼓式制动器可取mm2.5mm;消除制动蹄与制动鼓问的间隙所需的轮缸活塞行程,对鼓式制动器等于相应制动蹄中部与制动鼓之间的间隙的2倍;由于摩擦衬片变形而引起的轮缸活塞行程,可根据衬片的厚度、材料的弹性模量及单位压力值来计算;分别为鼓式制动器的蹄的变形与鼓的变形而引起的轮缸活塞行程,其值由试验确定。选取mm,求一个轮缸的工作容积。mm34.1.2 鼓式制动器制动轮缸直径与工作容积由式(4.2),求: mm 选取制动轮缸的直径mm选取mm,求一个轮缸的工作容积。mm3全部轮缸的总工作容积为 (4.5)式中:轮缸的数目。mm34.2 制动主缸直径与工作容积制动主缸的直径应符合GB 752487的系列尺寸,主缸直径的系列尺寸为14.5,16,17.5,19,20.5,22,(22.22),(23.81),24,(25.40),26,28,(28.58),30,32,35,38,42,46mm。制动主缸应有的工作容积 (4.8)式中:全部轮缸的总工作容积; 制动软管在液压下变形而引起的容积增量。在初步设计时,考虑到软管变形,轿车制动主缸的工作容积可取为,货车取,式中为全部轮缸的总工作容积。主缸活塞直径和活塞行程可由下式确定: (4.9)取因此求知mm根据GB 752487的系列尺寸取mm。4.3 制动轮缸活塞宽度与缸筒的壁厚4.3.1 盘式制动轮缸活塞宽度与缸筒壁厚根据已有的公式计算活塞的宽度 (4.6)于是求知:mm。一般情况下,液压缸缸筒壁厚由结构确定,必要时进行强度校核。校核时分薄壁和厚壁两种情况进行9。现取壁厚6mm,由于,因此按厚壁进行校核。 (4.7)式中:轮缸壁厚; 试验压力(当缸的额定压力Mpa时,取=1.5); 缸筒材料许用应力,=(为材料抗拉强度,n为安全系数,一般取n=5)。mm 由于mm6.18mm所以壁厚强度满足要求。4.3.2 鼓式制动器活塞宽度与缸筒壁厚根据已有的公式计算活塞的宽度 (4.6)于是求知:mm。现取壁厚mm,由于,因此按厚壁进行校核。 (4.7)式中:轮缸壁厚; 试验压力(当缸的额定压力Mpa时,取=1.5); 缸筒材料许用应力,=(为材料抗拉强度,n为安全系数,一般取n=5)。mm 由于mm2.0mm所以壁厚强度满足要求。4.4 制动主缸行程的计算 制动主缸行程的计算方法很多。在本次设计中采用,根据制动器间隙的设定值换算主缸的行程。 (4.10)式中:制动主缸的行程;轮缸活塞的面积(mm2); 主缸活塞的面积(mm2); 制动蹄支点到制动力作用点的距离(mm); 制动蹄支点到中心距离(mm); 制动鼓与制动蹄的间隙(mm)。mm。4.5 制动主缸活塞宽度与缸筒的壁厚4.5.1 制动主缸活塞宽度根据已有的公式计算活塞的宽度 (4.11)于是求知:mm。4.5.2 制动主缸筒的壁厚一般情况下,液压缸缸筒壁厚由结构确定,必要时进行强度校核。校核时分薄壁和厚壁两种情况进行9。现取壁厚mm,由于,因此按厚壁进行校核。 (4.12)式中:轮缸壁厚; 试验压力(当缸的额定压力Mpa时,取=1.5); 缸筒材料许用应力,=(为材料抗拉强度,n为安全系数,一般取n=5)。mm 由于mm4.67mm所以壁厚强度满足要求。4.6 制动踏板力与踏板行程制动踏板力Fr可用下式验算:式中:制动主缸活塞直径; 制动管路的液压; 制动踏板机构传动比,; 真空助力器的助力比; 见图4.1; 制动踏板机构及制动主缸的机械效率,可取。图4.1 液压制动驱动机构的计算用简图 N700N(4.13)通常,汽车液压驱动机构制动轮缸缸径与制动主缸缸径之比,当较小时,其活塞行程及相应的踏板行程便要加大。制动踏板工作行程为 (4.14)式中:主缸中推杆与活塞间的间隙,一般取1.5mm2.0mm;主缸活塞空行程,即主缸活塞由不工作的极限位置到使其皮碗完全封堵主缸上的旁通孔所经过的行程。mm170mm180mm在确定主缸容积时,应考虑到制动器零件的弹性变形、热变形以及制动衬片正常磨损量等,还应考虑到用于制动驱动系统信号指示的制动液体积。因此,制动踏板的全行程(至与地板相碰的行程)应大于正常工作行程。制动器调整正常时的踏板工作行程约为踏板全行程的40%60%,以便保证在制动管路中获得给定的压力。 为了避免空气进入制动管路,在主缸活塞回位弹簧(同时亦为回油阀弹簧)的计算中,应保证在制动踏板被放开以后,制动管路中仍能保持0.05Mpa0.14MPa的残余压力。4.7 真空助力器 真空助力器是利用负压来增补驾驶员施加于踏板上的力的构件。位于制动踏板与制动主缸之间,为便于安装通常与主缸合成一个组件,主缸的一部分伸入真空助力器壳体内。常用的液压制动系的真空助力器有两种:带橡胶反馈盘的单膜片真空助力器和带橡胶反馈盘的双膜片真空助力器。一般,双膜片助力器比单膜片助力器助力比大,但双膜片助力器中有两个串联的伺服膜片,因此,结构复、杂造价高。多用于载重汽车等需要较大制动力的工程车辆。单膜片多用于轿车和轻型卡车,故综合考虑性价比,我们选用带橡胶反馈盘的单膜片真空助力器作为路宝的真空助力器。其结构如图4.2所示:带橡胶反馈盘的单膜片真空助力器直接作用于制动主缸的推杆,并保证作用力同时同时作用于制动机构的两个回路。带橡胶膜片密封装置21的活塞22将助力缸分为助力主缸前腔和助力主缸后腔。前腔经真空单向阀与发动机进气歧管相连接,使该腔内保证一定的真空度。后腔内的压力则由橡胶阀11、12、橡胶反馈盘20等调节。当放开制动踏板时,在回位弹簧17的作用下控制阀柱塞19和橡胶阀11保持在右边的位置,这是作为空气空气阀的控制阀柱塞19紧靠橡胶阀11,使后腔与大气相通的阀门关闭。前后两腔相连。当踏板踏至某位置时,后腔的真空通道由作为真空阀的橡胶阀11关闭,使前后两腔隔绝,继续踩下踏板,使控制阀柱塞压紧橡胶反馈盘20并使之压缩一段距离,使控制阀柱塞离开橡胶阀11即后腔的控制阀打开,大气进入后腔,推动活塞22并通过推杆4推动制动主缸活塞。在这一推动过程中因为前腔空气压力小于后腔故产生助力效果。1伺服气室前腔壳体;2连接盘;3活塞杆密封圈;4制动主缸推杆;5膜片回位弹簧;6导向螺栓密封套;7真空源接口;8导向螺栓;9阀体;10密封套;11、12橡胶阀;13过滤环;14控制阀推杆;15销;16控制阀推杆弹簧;17阀门弹簧;18球铰;19控制阀柱塞;20橡胶反馈盘;21膜片;22活塞;23伺服气室后腔壳体。图4.2带橡胶反馈盘的单膜片真空助力器结构图4.8 制动液的选择与使用目前内外使用的制动液,按其原料和制造工艺的不同,有下列类型:(1)蓖麻油醇型制动液;(2)液醇醚型合成制动;(3)液硼酸酯型合成制动;(4)硅酸系制动液;(5)矿物油型制动液。其中前三类制动液均属合成型制动液。 结合当前我国制动液的实际情况,采用符合DOT3水平的合成制动液。4.9 制动力分配的调节装置 按照GB12676-1999的规定,未安装防抱死装置的M、N类车辆制动力在车轴之间的分配,应符合该标准附录B的要求。对于大多数汽车来说,必须采用制动力调节装置以满足这一要求。从制造成本方面考虑,在满足国家相关标准的前提下,采用感载比例阀作为其制动力分配的调节装置。4.9.1 感载比例阀感载比例阀如图4.4所示。阀体3安装在车身上,活塞4右部的空腔内有阀门2。不制动时,在感载拉力弹簧6通过杠杆5施加的推力F的作用下,活塞4处于右极限位置,阀门2因其杆部顶触螺塞1而处于开启位置。制动时,来自主缸的制动液由进油口A进入,并通过阀门从出油口B输出至后促动管路。此时,输出压力(压强)等于输入压力(压强)。因活塞右端承压面积大于活塞左端承压面积,故和对活塞的作用力不等,于是活塞不断左移,最后使其上的阀座与阀门接触而达到平衡状态。此后,的增量将小于的增量。1螺塞;2阀门;3阀体;4活塞;5杠杆;6感载拉力弹簧;7摇臂;8后悬架横向稳定杆图4.4 液压感载比例阀及其感载控制机构拉力弹簧6右端经吊耳与摇臂7相连,而摇臂则夹紧在汽车后悬架的横向稳定杆8的中部。当汽车装载量增加时,后悬架载荷也增加,因而后轮向车身移近;后悬架的横向稳定杆便带动摇臂7(顺时针)转过一个角度,将弹簧6进一步拉伸,作用于活塞上的推力F便增大,使活塞右移,制动液再由进油口A侧通过阀门流系向出油口B侧,使输出压力(压强)进一步提高。反之,汽车装载量减小,则推力F减小,输出压力(压强)就减小。这样,调节作用起始点控制压力值就随汽车实际装载量的变化而变化。4.10 本章小结本章主要对制动系统制动主缸,制动轮缸进行了设计分析并对相关的校核进行了计算。对踏板力和踏板行程进行了校核,并对主缸的行程进行了计算。介绍了串列式制动主缸的工作原理。对真空助力器的工作原理进行了分析计算和选取。最后确定了应采用的制动液的类型及制动力分配调节装置。 结 论本次设计是以路宝汽车的制动系统为研究对象,根据设计的要求,通过对汽车制动系统的结构和形式进行分析后,对汽车的制动力分配系数、制动强度和附着系数利用率、制动器最大制动力矩进行了详细的计算和分析。根据数据分析及所查阅的现有资料完成了如下制动系统的组成部分的设计:前轮盘式制动器包括直径为240mm的珠光体铸铁的制动盘及可锻铸铁的制动钳;后轮鼓式制动器包括内径为211mm灰铸铁的制动鼓及45号钢的制动蹄与制动底板;符合使用标准的摩擦片与摩擦块;液压轮缸主缸及管路的各项数据尺寸等,经校核符合国标中对制动系统的要求。按要求根据设计的制动器结构数据利用cad软件完成了盘式制动器装配图、鼓式制动器装配图、制动盘零件图、制动钳零件图、制动鼓零件图、制动蹄零件图、制动底板零件图、液压主缸装配图、液压管路布置图的绘制工作。对液压管路的布置进行的设计,采用了符合国家标准的设计要求。对制动液压元件,制动轮缸和制动主缸的主要结构进行了设计和校核。经过设计和校核液压系统的设计基本上达到了设计的要求。但是由于是第一次接触制动系统设计,设计过程中还会存在缺陷和不足。计算过程的条理性并未达到最佳化。参考文献1方泳龙.汽车制动理论与设计M.北京:国防工业出版社,2005:120.2刘惟信.汽车制动系统的结构分析与设计计算M.北京:清华大学出版社,2004:2050.3王望予.汽车设计M.北京:机械工业出版社,2006:257285.4余志生.汽车理论M.北京:机械工业出版社,2006:89.5陈家瑞.汽车构造(下)M,机械工业出版社:2005,第四版.293294.6凤勇.汽车机械基础M.北京:人民交通出版社,2005,第一版.51.7刘品,李哲.机械精度设计与检测基础M.哈尔滨:哈尔滨工业出版社,2005:5155.8刘惟信.汽车设计M.北京:清华大学出版社,2001:450461.9齐晓杰,安永东,齐英杰.汽车液压、液力与气压传动技术M.北京:化学工业出版社,2005:6970.10程国华.汽车制动系统发展漫谈J:汽车运用,2003,5(6):21-22. 11刘彬.汽车制动系统使用中的误区J:汽车运用,2003,9(
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:微型车路宝汽车制动系统的设计【8张CAD图纸和毕业论文】【汽车专业】【前盘后鼓式制动器】
链接地址:https://www.renrendoc.com/p-288695.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!