两足行走机器人—行走结构部分设计【带三维】【优秀含16张CAD图纸+全套机械毕业设计】两足行走机器人—行走结构部分设计【带三维】【优秀含16张CAD图纸+全套机械毕业设计】

收藏

资源目录
Skip Navigation Links.
Collapse 两足行走机器人—行走结构部分设计【优秀含16张CAD图纸+全套机械毕业设计】.zip两足行走机器人—行走结构部分设计【优秀含16张CAD图纸+全套机械毕业设计】.zip
Collapse 机器人三维设计图机器人三维设计图
asm0001.asm.2
asm0001.asm.3
asm0001.asm.4
asm0003.asm.10
asm0003.asm.11
asm0003.asm.12
asm0003.asm.9
asm0004.asm.9
asm0005.asm.10
asm0005.asm.6
asm0005.asm.7
asm0005.asm.8
asm0005.asm.9
asm0006.asm.10
asm0006.asm.11
asm0006.asm.12
asm0006.asm.7
asm0006.asm.8
asm0006.asm.9
asm0007.asm.2
asm0009.asm.2
asm0010.asm.4
asm0010.asm.5
asm0010.asm.6
asm0011.asm.4
asm0011.asm.5
current_session.pro
drw0001_dwg__out.log.1
drw0001_dwg__out.log.2
drw0002_dwg__out.log.1
drw0002_dwg__out.log.2
drw0002_dwg__out.log.3
drw0003_dwg__out.log.1
drw0003_dwg__out.log.2
drw0003_dwg__out.log.3
drw0004_dwg__out.log.1
drw0005_dwg__out.log.1
drw0005_dwg__out.log.2
drw0007_dwg__out.log.1
drw0008_dwg__out.log.1
drw0009_dwg__out.log.1
drw0010_dwg__out.log.1
drw0011_dwg__out.log.1
prt0001.prt.13
prt0002.prt.9
prt0003.prt.10
prt0003.prt.11
prt0003.prt.12
prt0003.prt.7
prt0003.prt.8
prt0003.prt.9
prt0004.prt.11
prt0004.prt.12
prt0004.prt.13
prt0005.prt.9
prt0006.prt.12
prt0006.prt.13
prt0006.prt.14
prt0006.prt.15
prt0006.prt.16
prt0006.prt.17
prt0007.prt.12
prt0008.prt.4
prt0008.prt.5
prt0008.prt.6
prt0009.prt.11
prt0009.prt.12
prt0009.prt.13
prt0010.prt.6
prt0011.prt.5
prt0011.prt.6
prt0011.prt.7
prt0012.prt.4
prt0014.prt.2
prt0014.prt.3
trail.txt.1
trail.txt.2
Collapse 毕业设计装配图毕业设计装配图
双足行走机器人头部和身体.dwg
各关节舵机连接件.dwg
大腿舵机连接件.dwg
头.dwg
手.dwg
手臂舵机连接件.dwg
机器人总装图.dwg
脚底2.dwg
腿部装备图.dwg
臂部装配图.dwg
舵机和舵机之间连接件.dwg
舵盘连接件.dwg
身体后面.dwg
身体和腿部连接件.dwg
身体正面.dwg
身体连接件.dwg
Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic.pdf---(点击预览)
两足行走机器人——行走结构部分设计.doc---(点击预览)
任务书.doc---(点击预览)
初稿.doc---(点击预览)
外文翻译.doc---(点击预览)
压缩包内文档预览:
INTELLIGENTCONTROLOFANAUTONOMOUSMOBILEROBOTUSINGTYPE2FUZZYLOGICLESLIEASTUDILLO,OSCARCASTILLO,PATRICIAMELIN,ARNULFOALANIS,JOSESORIA,LUISTAGUILARABSTRACTWEDEVELOPATRACKINGCONTROLLERFORTHEDYNAMICMODELOFUNICYCLEMOBILEROBOTBYINTEGRATINGAKINEMATICCONTROLLERANDATORQUECONTROLLERBASEDONFUZZYLOGICTHEORYCOMPUTERSIMULATIONSAREPRESENTEDCONFIRMINGTHEPERFORMANCEOFTHETRACKINGCONTROLLERANDITSAPPLICATIONTODIFFERENTNAVIGATIONPROBLEMSINDEXTERMSINTELLIGENTCONTROL,TYPE2FUZZYLOGIC,MOBILEROBOTSIINTRODUCTIONMOBILEROBOTSARENONHOLONOMICSYSTEMSDUETOTHECONSTRAINTSIMPOSEDONTHEIRKINEMATICSTHEEQUATIONSDESCRIBINGTHECONSTRAINTSCANNOTBEINTEGRATEDSIMBOLICALLYTOOBTAINEXPLICITRELATIONSHIPSBETWEENROBOTPOSITIONSINLOCALANDGLOBALCOORDINATE’SFRAMESHENCE,CONTROLPROBLEMSINVOLVETHEMHAVEATTRACTEDATTENTIONINTHECONTROLCOMMUNITYINTHELASTYEARS11DIFFERENTMETHODSHAVEBEENAPPLIEDTOSOLVEMOTIONCONTROLPROBLEMSKANAYAMAETAL10PROPOSEASTABLETRACKINGCONTROLMETHODFORANONHOLONOMICVEHICLEUSINGALYAPUNOVFUNCTIONLEEETAL12SOLVEDTRACKINGCONTROLUSINGBACKSTEPPINGANDIN13WITHSATURATIONCONSTRAINTSFURTHERMORE,MOSTREPORTEDDESIGNSRELYONINTELLIGENTCONTROLAPPROACHESSUCHASFUZZYLOGICCONTROL1814171820ANDNEURALNETWORKS619HOWEVERTHEMAJORITYOFTHEPUBLICATIONSMENTIONEDABOVE,HASCONCENTRATEDONKINEMATICSMODELSOFMOBILEROBOTS,WHICHARECONTROLLEDBYTHEVELOCITYINPUT,WHILELESSATTENTIONHASBEENPAIDTOTHECONTROLPROBLEMSOFNONHOLONOMICDYNAMICSYSTEMS,WHEREFORCESANDTORQUESARETHETRUEINPUTSBLOCHMANUSCRIPTRECEIVEDDECEMBER15,2005QNDACCEPTEDONAPRIL5,2006THISWORKWASSUPPORTEDINPARTBYTHERESEARCHCOUNCILOFDGESTUNDERGRANT49305PTHESTUDENTSALSOWERESUPPORTEDBYCONACYTWITHSCHOLARSHIPSFORTHEIRGRADUATESTUDIESOSCARCASTILLOISWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOCORRESPONDINGAUTHORPHONE526646236318FAX526646236318EMAILOCASTILLOTECTIJUANAMXPATRICIAMELINISWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILHARIASTECTIJUANAMXARNULFOALANISISWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILPMELINTECTIJUANAMXLESLIEASTUDILLOISAGRADUATESTUDENTINCOMPUTERSCIENCEWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILPMELINTECTIJUANAMXJOSESORIAISAWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILJSORIAUCSDEDULUISAGUILARISWITHCITEDIIPNTIJUANA,MEXICOEMAILLAGUILARCITEDIMXANDDRAKUNOV2ANDCHWA4,USEDASLIDINGMODECONTROLTOTHETRACKINGCONTROLPROBLEMFIERROANDLEWIS5PROPOSEADYNAMICALEXTENSIONTHATMAKESPOSSIBLETHEINTEGRATIONOFKINEMATICANDTORQUECONTROLLERFORANONHOLONOMICMOBILEROBOTFUKAOETAL7,INTRODUCEDANADAPTIVETRACKINGCONTROLLERFORTHEDYNAMICMODELOFMOBILEROBOTWITHUNKNOWNPARAMETERSUSINGBACKSTEPPINGINTHISPAPERWEPRESENTATRACKINGCONTROLLERFORTHEDYNAMICMODELOFAUNICYCLEMOBILEROBOT,USINGACONTROLLAWSUCHTHATTHEMOBILEROBOTVELOCITIESREACHTHEGIVENVELOCITYINPUTS,ANDAFUZZYLOGICCONTROLLERSUCHTHATPROVIDEDTHEREQUIREDTORQUESFORTHEACTUALMOBILEROBOTTHERESTOFTHISPAPERISORGANIZEDASFOLLOWSSECTIONSIIANDIIIDESCRIBETHEFORMULATIONPROBLEM,WHICHINCLUDETHEKINEMATICANDDYNAMICMODELOFTHEUNICYCLEMOBILEROBOTANDINTRODUCESTHETRACKINGCONTROLLERSECTIONIVILLUSTRATESTHESIMULATIONRESULTSUSINGTHETRACKINGCONTROLLERTHESECTIONVGIVESTHECONCLUSIONSIIPROBLEMFORMULATIONATHEMOBILEROBOTTHEMODELCONSIDEREDISAUNICYCLEMOBILEROBOTSEEFIG1,ITCONSISTOFTWODRIVINGWHEELSMOUNTEDONTHESAMEAXISANDAFRONTFREEWHEEL3FIG1WHEELEDMOBILEROBOTTHEMOTIONCANBEDESCRIBEDWITHEQUATION1OFMOVEMENTINAPLANE5ENGINEERINGLETTERS,132,EL_13_2_7ADVANCEONLINEPUBLICATION4AUGUST2006______________________________________________________________________________________WVQ100SIN0COSΘΘISTHEVECTOROFVELOCITIES,VANDWARETHELINEARANDANGULARVELOCITIESRESPECTIVELYISTHEINPUTVECTOR,ISASYMMETRICANDPOSITIVEDEFINITEINERTIAMATRIX,ISTHECENTRIPETALANDCORIOLISMATRIX,ISTHEGRAVITATIONALVECTOREQUATION1AREPRESENTSTHEKINEMATICSORSTEERINGSYSTEMOFAMOBILEROBOTNOTICETHATTHENOSLIPCONDITIONIMPOSEDANONHOLONOMICCONSTRAINTDESCRIBEDBY2,THATITMEANSTHATTHEMOBILEROBOTCANONLYMOVEINTHEDIRECTIONNORMALTOTHEAXISOFTHEDRIVINGWHEELSTWVV,RR∈ΤNXNRQM∈NXNRQQV∈,NRQG∈0SINCOS−ΘΘXY2BTRACKINGCONTROLLEROFMOBILEROBOTOURCONTROLOBJECTIVEISESTABLISHEDASFOLLOWSGIVENADESIREDTRAJECTORYQDTANDORIENTATIONOFMOBILEROBOTWEMUSTDESIGNACONTROLLERTHATAPPLYADEQUATETORQUEΤSUCHTHATTHEMEASUREDPOSITIONSQTACHIEVETHEDESIREDREFERENCEQDTREPRESENTEDAS30LIM−∞→TQTQDT3TOREACHTHECONTROLOBJECTIVE,WEAREBASEDINTHEPROCEDUREOF5,WEDERIVINGAΤTOFASPECIFICVCTTHATCONTROLSTHESTEERINGSYSTEM1AUSINGAFUZZYLOGICCONTROLLERFLCAGENERALSTRUCTUREOFTRACKINGCONTROLSYSTEMISPRESENTEDINTHEFIG2IIICONTROLOFTHEKINEMATICMODELWEAREBASEDONTHEPROCEDUREPROPOSEDBYKANAYAMAETAL10ANDNELSONETAL15TOSOLVETHETRACKINGPROBLEMFORTHEKINEMATICMODEL,THISISDENOTEDASVCTSUPPOSETHEDESIREDTRAJECTORYQDSATISFIES4DDDDDWVQ100SIN0COSΘΘ4USINGTHEROBOTLOCALFRAMETHEMOVINGCOORDINATESYSTEMXYINFIGURE1,THEERRORCOORDINATESCANBEDEFINEDAS5ΘΘΘΘΘΘΘ−−−−−DDDYXDEYYXXEEEQQTE1000COSSIN0SINCOS,5ANDTHEAUXILIARYVELOCITYCONTROLINPUTTHATACHIEVESTRACKINGFOR1AISGIVENBY6ΘΘEKVEKVWEKEVWVVEFVDYDDXDCCDCCSINCOS,,3216WHEREK1,K2ANDK3AREPOSITIVECONSTANTSIVFUZZYLOGICCONTROLLERTHEPURPOSEOFTHEFUZZYLOGICCONTROLLERFLCISTOFINDACONTROLINPUTΤSUCHTHATTHECURRENTVELOCITYVECTORVTOREACHTHEVELOCITYVECTORVCTHISISDENOTEDAS70LIM−∞→VVCT7ASISSHOWNINFIG2,BASICALLYTHEFLCHAVE2INPUTSVARIABLESCORRESPONDINGTHEVELOCITYERRORSOBTAINEDOF7DENOTEDASEVANDEWLINEARANDANGULARVELOCITYERRORSRESPECTIVELY,AND2OUTPUTSVARIABLES,THEDRIVINGANDROTATIONALINPUTTORQUESΤDENOTEDBYFANDNRESPECTIVELYTHEMEMBERSHIPFUNCTIONSMF9AREDEFINEDBY1TRIANGULARAND2TRAPEZOIDALFUNCTIONSFOREACHVARIABLEINVOLVEDDUETOTHEFACTAREEASYTOIMPLEMENTCOMPUTATIONALLYFIG3ANDFIG4DEPICTSTHEMFSINWHICHN,C,PREPRESENTTHEFUZZYSETS9NEGATIVE,ZEROANDPOSITIVERESPECTIVELYASSOCIATEDTOEACHINPUTANDOUTPUTVARIABLE,WHERETHEUNIVERSEOFDISCOURSEISNORMALIZEDINTO1,1RANGEFIG2TRACKINGCONTROLSTRUCTUREFIG3MEMBERSHIPFUNCTIONOFTHEINPUTVARIABLESEVANDEWFIG4MEMBERSHIPFUNCTIONSOFTHEOUTPUTVARIABLESFANDNTHERULESETOFFLCCONTAIN9RULESWHICHGOVERNINGTHEINPUTOUTPUTRELATIONSHIPOFTHEFLCANDTHISADOPTSTHEMAMDANISTYLEINFERENCEENGINE16,ANDWEUSETHECENTEROFGRAVITYMETHODTOREALIZEDEFUZZIFICATIONPROCEDUREINTABLEI,WEPRESENTTHERULESETWHOSEFORMATISESTABLISHEDASFOLLOWSRULEIIFEVISG1ANDEWISG2THENFISG3ANDNISG4WHEREG1G4ARETHEFUZZYSETASSOCIATEDTOEACHVARIABLEANDI19TABLE1FUZZYRULESETINTABLEI,NMEANSNEGATIVE,PMEANSPOSITIVEANDCMEANSZEROVSIMULATIONRESULTSSIMULATIONSHAVEBEENDONEINMATLAB®TOTESTTHETRACKINGCONTROLLEROFTHEMOBILEROBOTDEFINEDIN1WECONSIDERTHEINITIALPOSITIONQ00,0,0ANDINITIALVELOCITYV00,0FROMFIG5TOFIG8WESHOWTHERESULTSOFTHESIMULATIONFORTHECASE1POSITIONANDORIENTATIONERRORSAREDEPICTEDINTHEFIG5ANDFIG6RESPECTIVELY,ASCANBEOBSERVEDTHEERRORSARESUFFICIENTCLOSETOZERO,THETRAJECTORYTRACKEDSEEFIG7ISVERYCLOSETOTHEDESIRED,ANDTHEVELOCITYERRORSSHOWNINFIG8DECREASETOZERO,ACHIEVINGTHECONTROLOBJECTIVEINLESSTHAN1SECONDOFTHEWHOLESIMULATIONWESHOWINFIG9THESIMULINKBLOCKDIAGRAMTOTESTTHECONTROLLERWEALSOSHOWINFIG10THETRACKINGERRORSINTHETHREEVARIABLESFINALLY,WESHOWINFIG11THEEVOLUTIONOFTHEGENETICALGORITHMTHATWASUSEDTOFINDTHEOPTIMALPARAMETERSFORTHEFUZZYCONTROLLERFIG5POSITIONSERRORWITHRESPECTTOTHEREFERENCEVALUESSOLIDERRORINX,DOTTEDERRORINYFIG6ORIENTATIONERRORWITHRESPECTTOTHEREFERENCEVALUESFIG7MOBILEROBOTTRAJECTORYFIG8VELOCITYERRORSSOLIDERRORINE,DOTTEDERRORINEVWFIG9SIMULINKBLOCKDIAGRAMOFTHECONTROLLERFIG10TRACKINGERRORSINTHETHREEVARIABLESFIG11EVOLUTIONOFGAFORFINDINGOPTIMALCONTROLLERINTABLEIIWESHOWSIMULATIONRESULTSFOR25EXPERIMENTSWITHDIFFERENTCONDITIONSFORTHEGAINSOFTHEFUZZYCONTROLLERWECANALSOAPPRECIATEFROMTHISTABLETHATDIFFERENTREFERENCEVELOCITIESANDPOSITIONSWERECONSIDEREDTABLEIISIMULATIONRESULTSFORDIFFERENTEXPERIMENTSWITHTHEFUZZYCONTROLLERVICONCLUSIONSWEDESCRIBEDTHEDEVELOPMENTOFATRACKINGCONTROLLERINTEGRATINGAFUZZYLOGICCONTROLLERFORAUNICYCLEMOBILEROBOTWITHKNOWNDYNAMICS,WHICHCANBEAPPLIEDFORBOTH,POINTSTABILIZATIONANDTRAJECTORYTRACKINGCOMPUTERSIMULATIONRESULTSCONFIRMTHATTHECONTROLLERCANACHIEVEOUROBJECTIVEASFUTUREWORK,SEVERALEXTENSIONSCANBEMADETOTHECONTROLSTRUCTUREOFFIG2,SUCHASTOINCREASETHETRACKINGACCURACYANDTHEPERFORMANCELEVELREFERENCES1SBENTALBA,AELHAJJAJI,ARACHID,FUZZYCONTROLOFAMOBILEROBOTANEWAPPROACH,PROCIEEEINTCONFONCONTROLAPPLICATIONS,HARTFORD,CT,PP6972,OCTOBER19972AMBLOCH,SDRAKUNOV,TRACKINGINNONHOLONOMICDYNAMICSYSTEMVIASLIDINGMODES,PROCIEEECONFONDECISIONCONTROL,BRIGHTON,UK,PP11271132,19913GCAMPION,GBASTIN,BD’ANDREANOVEL,STRUCTURALPROPERTIESANDCLASSIFICATIONOFKINEMATICANDDYNAMICMODELSOFWHEELEDMOBILEROBOTS,IEEETRANSONROBOTICSANDAUTOMATION,VOL12,NO1,FEBRUARY19964DCHWA,SLIDINGMODETRACKINGCONTROLOFNONHOLONOMICWHEELEDMOBILEROBOTSINPOLARCOORDINATES,IEEETRANSONCONTROLSYSTTECHVOL12,NO4,PP633644,JULY20045RFIERROANDFLLEWIS,CONTROLOFANONHOLONOMICMOBILEROBOTBACKSTEPPINGKINEMATICSINTODYNAMICSPROC34THCONFONDECISIONCONTROL,NEWORLEANS,LA,19956RFIERRO,FLLEWIS,CONTROLOFANONHOLONOMICMOBILEROBOTUSINGNEURALNETWORKS,IEEETRANSONNEURALNETWORKS,VOL9,NO4,PP589–600,JULY19987TFUKAO,HNAKAGAWA,NADACHI,ADAPTIVETRACKINGCONTROLOFANONHOLONOMICMOBILEROBOT,IEEETRANSONROBOTICSANDAUTOMATION,VOL16,NO5,PP609615,OCTOBER20008SISHIKAWA,AMETHODOFINDOORMOBILEROBOTNAVIGATIONBYFUZZYCONTROL,PROCINTCONFINTELLROBOTSYST,OSAKA,JAPAN,PP10131018,19919JSRJANG,CTSUN,EMIZUTANI,NEUROFUZZYANDSOFTCOMPUTINGACOMPUTATIONALAPPROACHTOLEARNINGANDMACHINEINTELLIGENCE,PRENTICEHALL,UPPERSADLERIVER,NJ,199710YKANAYAMA,YKIMURA,FMIYAZAKITNOGUCHI,ASTABLETRACKINGCONTROLMETHODFORANONHOLONOMICMOBILEROBOT,PROCIEEE/RSJINTWORKSHOPONINTELLIGENTROBOTSANDSYSTEMS,OSAKA,JAPAN,PP12361241,199111IKOLMANOVSKY,NHMCCLAMROCH,DEVELOPMENTSINNONHOLONOMICNONTROLPROBLEMS,IEEECONTROLSYSTMAG,VOL15,PP20–36,DECEMBER199512TCLEE,CHLEE,CCTENG,TRACKINGCONTROLOFMOBILEROBOTSUSINGTHEBACKSTEEPINGTECHNIQUE,PROC5THINTCONFCONTR,AUTOMAT,ROBOTVISION,SINGAPORE,PP17151719,DECEMBER199813TCLEE,KTAI,TRACKINGCONTROLOFUNICYCLEMODELEDMOBILEROBOTSUSINGASATURATIONFEEDBACKCONTROLLER,IEEETRANSONCONTROLSYSTEMSTECHNOLOGY,VOL9,NO2,PP305318,MARCH200114THLEE,FHFLEUNG,PKSTAM,POSITIONCONTROLFORWHEELEDMOBILEROBOTUSINGAFUZZYCONTROLLER,IEEEPP525528,199915WNELSON,ICOX,LOCALPATHCONTROLFORANAUTONOMOUSVEHICLE,PROCIEEECONFONROBOTICSANDAUTOMATION,PP15041510,198816KMPASSINO,SY

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

INTELLIGENTCONTROLOFANAUTONOMOUSMOBILEROBOTUSINGTYPE2FUZZYLOGICLESLIEASTUDILLO,OSCARCASTILLO,PATRICIAMELIN,ARNULFOALANIS,JOSESORIA,LUISTAGUILARABSTRACTWEDEVELOPATRACKINGCONTROLLERFORTHEDYNAMICMODELOFUNICYCLEMOBILEROBOTBYINTEGRATINGAKINEMATICCONTROLLERANDATORQUECONTROLLERBASEDONFUZZYLOGICTHEORYCOMPUTERSIMULATIONSAREPRESENTEDCONFIRMINGTHEPERFORMANCEOFTHETRACKINGCONTROLLERANDITSAPPLICATIONTODIFFERENTNAVIGATIONPROBLEMSINDEXTERMSINTELLIGENTCONTROL,TYPE2FUZZYLOGIC,MOBILEROBOTSIINTRODUCTIONMOBILEROBOTSARENONHOLONOMICSYSTEMSDUETOTHECONSTRAINTSIMPOSEDONTHEIRKINEMATICSTHEEQUATIONSDESCRIBINGTHECONSTRAINTSCANNOTBEINTEGRATEDSIMBOLICALLYTOOBTAINEXPLICITRELATIONSHIPSBETWEENROBOTPOSITIONSINLOCALANDGLOBALCOORDINATE’SFRAMESHENCE,CONTROLPROBLEMSINVOLVETHEMHAVEATTRACTEDATTENTIONINTHECONTROLCOMMUNITYINTHELASTYEARS11DIFFERENTMETHODSHAVEBEENAPPLIEDTOSOLVEMOTIONCONTROLPROBLEMSKANAYAMAETAL10PROPOSEASTABLETRACKINGCONTROLMETHODFORANONHOLONOMICVEHICLEUSINGALYAPUNOVFUNCTIONLEEETAL12SOLVEDTRACKINGCONTROLUSINGBACKSTEPPINGANDIN13WITHSATURATIONCONSTRAINTSFURTHERMORE,MOSTREPORTEDDESIGNSRELYONINTELLIGENTCONTROLAPPROACHESSUCHASFUZZYLOGICCONTROL1814171820ANDNEURALNETWORKS619HOWEVERTHEMAJORITYOFTHEPUBLICATIONSMENTIONEDABOVE,HASCONCENTRATEDONKINEMATICSMODELSOFMOBILEROBOTS,WHICHARECONTROLLEDBYTHEVELOCITYINPUT,WHILELESSATTENTIONHASBEENPAIDTOTHECONTROLPROBLEMSOFNONHOLONOMICDYNAMICSYSTEMS,WHEREFORCESANDTORQUESARETHETRUEINPUTSBLOCHMANUSCRIPTRECEIVEDDECEMBER15,2005QNDACCEPTEDONAPRIL5,2006THISWORKWASSUPPORTEDINPARTBYTHERESEARCHCOUNCILOFDGESTUNDERGRANT49305PTHESTUDENTSALSOWERESUPPORTEDBYCONACYTWITHSCHOLARSHIPSFORTHEIRGRADUATESTUDIESOSCARCASTILLOISWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOCORRESPONDINGAUTHORPHONE526646236318FAX526646236318EMAILOCASTILLOTECTIJUANAMXPATRICIAMELINISWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILHARIASTECTIJUANAMXARNULFOALANISISWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILPMELINTECTIJUANAMXLESLIEASTUDILLOISAGRADUATESTUDENTINCOMPUTERSCIENCEWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILPMELINTECTIJUANAMXJOSESORIAISAWITHTHEDIVISIONOFGRADUATESTUDIESANDRESEARCHINTIJUANAINSTITUTEOFTECHNOLOGY,MEXICOEMAILJSORIAUCSDEDULUISAGUILARISWITHCITEDIIPNTIJUANA,MEXICOEMAILLAGUILARCITEDIMXANDDRAKUNOV2ANDCHWA4,USEDASLIDINGMODECONTROLTOTHETRACKINGCONTROLPROBLEMFIERROANDLEWIS5PROPOSEADYNAMICALEXTENSIONTHATMAKESPOSSIBLETHEINTEGRATIONOFKINEMATICANDTORQUECONTROLLERFORANONHOLONOMICMOBILEROBOTFUKAOETAL7,INTRODUCEDANADAPTIVETRACKINGCONTROLLERFORTHEDYNAMICMODELOFMOBILEROBOTWITHUNKNOWNPARAMETERSUSINGBACKSTEPPINGINTHISPAPERWEPRESENTATRACKINGCONTROLLERFORTHEDYNAMICMODELOFAUNICYCLEMOBILEROBOT,USINGACONTROLLAWSUCHTHATTHEMOBILEROBOTVELOCITIESREACHTHEGIVENVELOCITYINPUTS,ANDAFUZZYLOGICCONTROLLERSUCHTHATPROVIDEDTHEREQUIREDTORQUESFORTHEACTUALMOBILEROBOTTHERESTOFTHISPAPERISORGANIZEDASFOLLOWSSECTIONSIIANDIIIDESCRIBETHEFORMULATIONPROBLEM,WHICHINCLUDETHEKINEMATICANDDYNAMICMODELOFTHEUNICYCLEMOBILEROBOTANDINTRODUCESTHETRACKINGCONTROLLERSECTIONIVILLUSTRATESTHESIMULATIONRESULTSUSINGTHETRACKINGCONTROLLERTHESECTIONVGIVESTHECONCLUSIONSIIPROBLEMFORMULATIONATHEMOBILEROBOTTHEMODELCONSIDEREDISAUNICYCLEMOBILEROBOTSEEFIG1,ITCONSISTOFTWODRIVINGWHEELSMOUNTEDONTHESAMEAXISANDAFRONTFREEWHEEL3FIG1WHEELEDMOBILEROBOTTHEMOTIONCANBEDESCRIBEDWITHEQUATION1OFMOVEMENTINAPLANE5ENGINEERINGLETTERS,132,EL_13_2_7ADVANCEONLINEPUBLICATION4AUGUST2006______________________________________________________________________________________WVQ100SIN0COSΘΘISTHEVECTOROFVELOCITIES,VANDWARETHELINEARANDANGULARVELOCITIESRESPECTIVELYISTHEINPUTVECTOR,ISASYMMETRICANDPOSITIVEDEFINITEINERTIAMATRIX,ISTHECENTRIPETALANDCORIOLISMATRIX,ISTHEGRAVITATIONALVECTOREQUATION1AREPRESENTSTHEKINEMATICSORSTEERINGSYSTEMOFAMOBILEROBOTNOTICETHATTHENOSLIPCONDITIONIMPOSEDANONHOLONOMICCONSTRAINTDESCRIBEDBY2,THATITMEANSTHATTHEMOBILEROBOTCANONLYMOVEINTHEDIRECTIONNORMALTOTHEAXISOFTHEDRIVINGWHEELSTWVV,RR∈ΤNXNRQM∈NXNRQQV∈,NRQG∈0SINCOS−ΘΘXY2BTRACKINGCONTROLLEROFMOBILEROBOTOURCONTROLOBJECTIVEISESTABLISHEDASFOLLOWSGIVENADESIREDTRAJECTORYQDTANDORIENTATIONOFMOBILEROBOTWEMUSTDESIGNACONTROLLERTHATAPPLYADEQUATETORQUEΤSUCHTHATTHEMEASUREDPOSITIONSQTACHIEVETHEDESIREDREFERENCEQDTREPRESENTEDAS30LIM−∞→TQTQDT3TOREACHTHECONTROLOBJECTIVE,WEAREBASEDINTHEPROCEDUREOF5,WEDERIVINGAΤTOFASPECIFICVCTTHATCONTROLSTHESTEERINGSYSTEM1AUSINGAFUZZYLOGICCONTROLLERFLCAGENERALSTRUCTUREOFTRACKINGCONTROLSYSTEMISPRESENTEDINTHEFIG2IIICONTROLOFTHEKINEMATICMODELWEAREBASEDONTHEPROCEDUREPROPOSEDBYKANAYAMAETAL10ANDNELSONETAL15TOSOLVETHETRACKINGPROBLEMFORTHEKINEMATICMODEL,THISISDENOTEDASVCTSUPPOSETHEDESIREDTRAJECTORYQDSATISFIES4DDDDDWVQ100SIN0COSΘΘ4USINGTHEROBOTLOCALFRAMETHEMOVINGCOORDINATESYSTEMXYINFIGURE1,THEERRORCOORDINATESCANBEDEFINEDAS5ΘΘΘΘΘΘΘ−−−−−DDDYXDEYYXXEEEQQTE1000COSSIN0SINCOS,5ANDTHEAUXILIARYVELOCITYCONTROLINPUTTHATACHIEVESTRACKINGFOR1AISGIVENBY6ΘΘEKVEKVWEKEVWVVEFVDYDDXDCCDCCSINCOS,,3216WHEREK1,K2ANDK3AREPOSITIVECONSTANTSIVFUZZYLOGICCONTROLLERTHEPURPOSEOFTHEFUZZYLOGICCONTROLLERFLCISTOFINDACONTROLINPUTΤSUCHTHATTHECURRENTVELOCITYVECTORVTOREACHTHEVELOCITYVECTORVCTHISISDENOTEDAS70LIM−∞→VVCT7ASISSHOWNINFIG2,BASICALLYTHEFLCHAVE2INPUTSVARIABLESCORRESPONDINGTHEVELOCITYERRORSOBTAINEDOF7DENOTEDASEVANDEWLINEARANDANGULARVELOCITYERRORSRESPECTIVELY,AND2OUTPUTSVARIABLES,THEDRIVINGANDROTATIONALINPUTTORQUESΤDENOTEDBYFANDNRESPECTIVELYTHEMEMBERSHIPFUNCTIONSMF9AREDEFINEDBY1TRIANGULARAND2TRAPEZOIDALFUNCTIONSFOREACHVARIABLEINVOLVEDDUETOTHEFACTAREEASYTOIMPLEMENTCOMPUTATIONALLYFIG3ANDFIG4DEPICTSTHEMFSINWHICHN,C,PREPRESENTTHEFUZZYSETS9NEGATIVE,ZEROANDPOSITIVERESPECTIVELYASSOCIATEDTOEACHINPUTANDOUTPUTVARIABLE,WHERETHEUNIVERSEOFDISCOURSEISNORMALIZEDINTO1,1RANGEFIG2TRACKINGCONTROLSTRUCTUREFIG3MEMBERSHIPFUNCTIONOFTHEINPUTVARIABLESEVANDEWFIG4MEMBERSHIPFUNCTIONSOFTHEOUTPUTVARIABLESFANDNTHERULESETOFFLCCONTAIN9RULESWHICHGOVERNINGTHEINPUTOUTPUTRELATIONSHIPOFTHEFLCANDTHISADOPTSTHEMAMDANISTYLEINFERENCEENGINE16,ANDWEUSETHECENTEROFGRAVITYMETHODTOREALIZEDEFUZZIFICATIONPROCEDUREINTABLEI,WEPRESENTTHERULESETWHOSEFORMATISESTABLISHEDASFOLLOWSRULEIIFEVISG1ANDEWISG2THENFISG3ANDNISG4WHEREG1G4ARETHEFUZZYSETASSOCIATEDTOEACHVARIABLEANDI19TABLE1FUZZYRULESETINTABLEI,NMEANSNEGATIVE,PMEANSPOSITIVEANDCMEANSZEROVSIMULATIONRESULTSSIMULATIONSHAVEBEENDONEINMATLAB®TOTESTTHETRACKINGCONTROLLEROFTHEMOBILEROBOTDEFINEDIN1WECONSIDERTHEINITIALPOSITIONQ00,0,0ANDINITIALVELOCITYV00,0FROMFIG5TOFIG8WESHOWTHERESULTSOFTHESIMULATIONFORTHECASE1POSITIONANDORIENTATIONERRORSAREDEPICTEDINTHEFIG5ANDFIG6RESPECTIVELY,ASCANBEOBSERVEDTHEERRORSARESUFFICIENTCLOSETOZERO,THETRAJECTORYTRACKEDSEEFIG7ISVERYCLOSETOTHEDESIRED,ANDTHEVELOCITYERRORSSHOWNINFIG8DECREASETOZERO,ACHIEVINGTHECONTROLOBJECTIVEINLESSTHAN1SECONDOFTHEWHOLESIMULATIONWESHOWINFIG9THESIMULINKBLOCKDIAGRAMTOTESTTHECONTROLLERWEALSOSHOWINFIG10THETRACKINGERRORSINTHETHREEVARIABLESFINALLY,WESHOWINFIG11THEEVOLUTIONOFTHEGENETICALGORITHMTHATWASUSEDTOFINDTHEOPTIMALPARAMETERSFORTHEFUZZYCONTROLLERFIG5POSITIONSERRORWITHRESPECTTOTHEREFERENCEVALUESSOLIDERRORINX,DOTTEDERRORINYFIG6ORIENTATIONERRORWITHRESPECTTOTHEREFERENCEVALUESFIG7MOBILEROBOTTRAJECTORYFIG8VELOCITYERRORSSOLIDERRORINE,DOTTEDERRORINEVWFIG9SIMULINKBLOCKDIAGRAMOFTHECONTROLLERFIG10TRACKINGERRORSINTHETHREEVARIABLESFIG11EVOLUTIONOFGAFORFINDINGOPTIMALCONTROLLERINTABLEIIWESHOWSIMULATIONRESULTSFOR25EXPERIMENTSWITHDIFFERENTCONDITIONSFORTHEGAINSOFTHEFUZZYCONTROLLERWECANALSOAPPRECIATEFROMTHISTABLETHATDIFFERENTREFERENCEVELOCITIESANDPOSITIONSWERECONSIDEREDTABLEIISIMULATIONRESULTSFORDIFFERENTEXPERIMENTSWITHTHEFUZZYCONTROLLERVICONCLUSIONSWEDESCRIBEDTHEDEVELOPMENTOFATRACKINGCONTROLLERINTEGRATINGAFUZZYLOGICCONTROLLERFORAUNICYCLEMOBILEROBOTWITHKNOWNDYNAMICS,WHICHCANBEAPPLIEDFORBOTH,POINTSTABILIZATIONANDTRAJECTORYTRACKINGCOMPUTERSIMULATIONRESULTSCONFIRMTHATTHECONTROLLERCANACHIEVEOUROBJECTIVEASFUTUREWORK,SEVERALEXTENSIONSCANBEMADETOTHECONTROLSTRUCTUREOFFIG2,SUCHASTOINCREASETHETRACKINGACCURACYANDTHEPERFORMANCELEVELREFERENCES1SBENTALBA,AELHAJJAJI,ARACHID,FUZZYCONTROLOFAMOBILEROBOTANEWAPPROACH,PROCIEEEINTCONFONCONTROLAPPLICATIONS,HARTFORD,CT,PP6972,OCTOBER19972AMBLOCH,SDRAKUNOV,TRACKINGINNONHOLONOMICDYNAMICSYSTEMVIASLIDINGMODES,PROCIEEECONFONDECISIONCONTROL,BRIGHTON,UK,PP11271132,19913GCAMPION,GBASTIN,BD’ANDREANOVEL,STRUCTURALPROPERTIESANDCLASSIFICATIONOFKINEMATICANDDYNAMICMODELSOFWHEELEDMOBILEROBOTS,IEEETRANSONROBOTICSANDAUTOMATION,VOL12,NO1,FEBRUARY19964DCHWA,SLIDINGMODETRACKINGCONTROLOFNONHOLONOMICWHEELEDMOBILEROBOTSINPOLARCOORDINATES,IEEETRANSONCONTROLSYSTTECHVOL12,NO4,PP633644,JULY20045RFIERROANDFLLEWIS,CONTROLOFANONHOLONOMICMOBILEROBOTBACKSTEPPINGKINEMATICSINTODYNAMICSPROC34THCONFONDECISIONCONTROL,NEWORLEANS,LA,19956RFIERRO,FLLEWIS,CONTROLOFANONHOLONOMICMOBILEROBOTUSINGNEURALNETWORKS,IEEETRANSONNEURALNETWORKS,VOL9,NO4,PP589–600,JULY19987TFUKAO,HNAKAGAWA,NADACHI,ADAPTIVETRACKINGCONTROLOFANONHOLONOMICMOBILEROBOT,IEEETRANSONROBOTICSANDAUTOMATION,VOL16,NO5,PP609615,OCTOBER20008SISHIKAWA,AMETHODOFINDOORMOBILEROBOTNAVIGATIONBYFUZZYCONTROL,PROCINTCONFINTELLROBOTSYST,OSAKA,JAPAN,PP10131018,19919JSRJANG,CTSUN,EMIZUTANI,NEUROFUZZYANDSOFTCOMPUTINGACOMPUTATIONALAPPROACHTOLEARNINGANDMACHINEINTELLIGENCE,PRENTICEHALL,UPPERSADLERIVER,NJ,199710YKANAYAMA,YKIMURA,FMIYAZAKITNOGUCHI,ASTABLETRACKINGCONTROLMETHODFORANONHOLONOMICMOBILEROBOT,PROCIEEE/RSJINTWORKSHOPONINTELLIGENTROBOTSANDSYSTEMS,OSAKA,JAPAN,PP12361241,199111IKOLMANOVSKY,NHMCCLAMROCH,DEVELOPMENTSINNONHOLONOMICNONTROLPROBLEMS,IEEECONTROLSYSTMAG,VOL15,PP20–36,DECEMBER199512TCLEE,CHLEE,CCTENG,TRACKINGCONTROLOFMOBILEROBOTSUSINGTHEBACKSTEEPINGTECHNIQUE,PROC5THINTCONFCONTR,AUTOMAT,ROBOTVISION,SINGAPORE,PP17151719,DECEMBER199813TCLEE,KTAI,TRACKINGCONTROLOFUNICYCLEMODELEDMOBILEROBOTSUSINGASATURATIONFEEDBACKCONTROLLER,IEEETRANSONCONTROLSYSTEMSTECHNOLOGY,VOL9,NO2,PP305318,MARCH200114THLEE,FHFLEUNG,PKSTAM,POSITIONCONTROLFORWHEELEDMOBILEROBOTUSINGAFUZZYCONTROLLER,IEEEPP525528,199915WNELSON,ICOX,LOCALPATHCONTROLFORANAUTONOMOUSVEHICLE,PROCIEEECONFONROBOTICSANDAUTOMATION,PP15041510,198816KMPASSINO,SY
编号:20150717195136156    类型:共享资源    大小:14.92MB    格式:ZIP    上传时间:2015-07-17
  
50
关 键 词:
行走 机器人 结构 部分 部份 设计 优秀 优良 16 cad 图纸 全套 机械 毕业设计
资源描述:

!【详情如下】CAD图纸+word设计说明书.doc[10000字,24页]【需要咨询购买全套设计请加QQ97666224】.bat

两足行走机器人——行走结构部分设计.doc

任务书.doc

初稿.doc

外文翻译.doc

封面、中外文摘要.doc

开题报告.doc

毕业答辩.ppt

行走结构部分设计审题表.doc

双足行走机器人头部和身体.dwg

各关节舵机连接件.dwg

大腿舵机连接件.dwg

头.dwg

手.dwg

手臂舵机连接件.dwg

机器人总装图.dwg

脚底2.dwg

腿部装备图.dwg

臂部装配图.dwg

舵机和舵机之间连接件.dwg

舵盘连接件.dwg

身体后面.dwg

身体和腿部连接件.dwg

身体正面.dwg

身体连接件.dwg

机器人三维设计图


毕业设计说明书(论文)中文摘要


20世纪40年代,伴随着遥控操纵器和数控制造技术的出现,关于机器人技术的研究开始出现。经过几十年的发展,数百种不同结构、不同控制系统、不同用途的机器人已进入了实用化阶段。目前,机器人大多以轮子的形式实现行走功能阶段。真正模仿人类用腿走路的机器人还不多,虽有一些六足、四足机器人涌现,但是两足机器人还是凤毛麟角。本课题主要针对两足机器人的行走进行研究、分析、设计,然后材料加工制作,最后进行组装和行走调试。



关键词  研究  设计  制作


毕业设计说明书(论文)外文摘要


Title          The Robot Move with Two-legs                  


             — Designing of Stepped  Structure                                                


Abstract

In 1940s, along with the remote control and digital manufacturing technologies, the researches on robot technology were appeared. After decades of development, hundreds of different structures, different control systems, and different uses of the robots have been entered into a practical stage. At present, most robots use   wheel to realize the function phase of walking. But there is little robot can imitate human walking that with two legs , although a number of six-legged, four-legged robots have emerged, two-legged robots are rare. So the main topics of this  study is to research, analysis and design on the two-legged walking robot, and product materials, then set up them and do some adjustment through walking in the final.


Keywords  research  design  facture

目   录


1  绪论1

1.1  引言1

1.2  机器人的发展及技术1

1.3  两足机器人的优点及国内外研究概况2

1.4  本课题的主要工作7

2  双足机器人本体结构设计分析8

2.1  引言8

2.2  两足机器人的结构分析8

2.3  机器人设计思路9

2.4  机器人设计方案10

2.5  驱动方式的选择12

3  双足机器人的具体制作13

3.1  双足机器人的材料选择13

3.2  双足机器人的零件加工13

3.3  两足机器人的组装16

3.4  两足机器人相关数据19

3.5  两足机器人总体尺寸19

3.6  舵机具体参数19

4  课题总结20

结束语21

致谢22

参考文献23



1  绪论

1.1  引言

目前,机器人已形成一个不同技术层次、应用于多种环境的“庞大”家族,从天上到地下,从陆地到海洋到处都可以看到机器人的身影。世界著名机器人专家,日本早稻田大学的加藤一郎教授曾经指出“机器人应当具有的最大的特征之一是步行功能”。步行机器人的研究涉及到多门学科的交叉融合,如仿生学、机构学、控制理论与工程学、电子工程学、计算机科学及传感器信息融合等。仿人形机器人正成为机器人研究中的一个热点,其研究水平,在一定程度上代表了一个国家的高科技发展水平和综合实力。研究仿人形双足步行机器人,除了具有重要的学术意义,还有现实的应用价值。

参 考 文 献


[1]  周远清,张再兴等编著. 智能机器人系统[M]. 北京: 清华大学出版社,1989.

[2]  蒋新松主编. 机器人学导论[M]. 沈阳: 辽宁科学技术出版社,1994.

[3]  方建军,何广平. 智能机器人[M]. 北京:化学工业出版社,2004.

[4]  张永学. 双足机器人步态规划及步行控制研究[D]. 哈尔滨工业大学博士学位论文. 2001.

[5]  刘志远. 两足机器人动态行走研究[D]. 哈尔滨工业大学博士论文. 1991.

[6]  刘志远,戴绍安,裴润,张栓,傅佩深. 零力矩点与两足机器人动态行走稳定性的关系[N]. 哈尔滨工业大学学报. 1994.

[7]  纪军红. HIT-Ⅱ双足步行机器人步态规划研究[D]. 哈尔滨工业大学博士论文,2000.

[8]  麻亮,纪军红,强文义,傅佩深. 基于力矩传感器的双足机器人在线模糊步态调整器设计[R]. 2000.

[9]  竺长安. 两足步行机器人系统分析、设计及运动控制[D]. 国防科技大学博士论文. 1992.

[10] 马宏绪. 两足步行机器人动态步行研究[D]. 国防科技大学博士论文. 1995.

[11] 包志军. 仿人型机器人运动特性研究[D]. 上海交通大学博士论文. 2000.

[12] 孙富春,朱纪洪,刘国栋等. 机器人学导论-分析、系统及应用[M]. 北京:电子工业出版社,2004.

[13] 柳洪义,宋伟刚. 机器人技术基础[M]. 北京:冶金工业出版社,2002

[14] 刘晋春,白基成,郭永丰. 特种加工[M]. 北京:机械工业出版社,2008.3.

[15] 解仑,王志良,李华俊.双足步行机器人制作技术[M]. 北京:机械工业出版社,2008.4.


  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:两足行走机器人—行走结构部分设计【带三维】【优秀含16张CAD图纸+全套机械毕业设计】
链接地址:http://www.renrendoc.com/p-457624.html

当前资源信息

4.0
 
(2人评价)
浏览:755次
小林设计Q97666224上传于2015-07-17

官方联系方式

客服手机:17625900360   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

精品推荐

相关阅读

人人文库
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

copyright@ 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5