减震器对底部隔震结构抗震反应的作用.doc

减震器对底部隔震结构抗震反应的作用【中文7500字】

收藏

压缩包内文档预览:(预览前20页/共24页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:6099441    类型:共享资源    大小:764.10KB    格式:RAR    上传时间:2017-11-16 上传人:闰*** IP属地:河南
13
积分
关 键 词:
减震器 对于 底部 结构 抗震 反应 反映 作用 中文
资源描述:
减震器对底部隔震结构抗震反应的作用【中文7500字】,减震器,对于,底部,结构,抗震,反应,反映,作用,中文
内容简介:
【中文 7500 字】减震器对底部隔震结构抗震反应的作用VASANT A MATSAGAR,R.S JANGID印度科学院土木工程部摘要:近年来,减震器对于多层的底部隔震结构在地震效应下的抗震作用正被研究。隔震结构被模拟成每层都具有横向自由度的剪切型结构。隔震器可以用两种不同的数学公式描述:双线性滞回型和等线性粘滞型。这两种不同的隔震系统的运动公式是产生于NEWMARK 的逐步整数法的增量型式,并由此解答出来的。在不同的地震情况下,对应不同双线性滞回曲线的顶层绝对加速度和支座位移的变化都被计算出来,用以研究隔震滞回曲线的形状。研究了一些系统参数的变化对隔震结构在地震作用下的力位移曲线形状的不同,这些参数包括以下几个:隔震器的屈服位移,上部结构的柔度,隔震时间以及底部隔震结构的层数。研究这些参数的影响作用后发现,规范规定运用的双线性滞回系统的等线性粘滞阻尼器在支座位移的设计上是偏于安全的,但按此模型设计出的上部结构的加速度上却是偏小的。底部隔震结构的抗震作用很大程度上受隔震器滞回曲线形状的影响。屈服位移值较低的隔震器(例如滑移型的隔震系统)更容易增大上部结构的加速度,并由此产生较高的附加频率。而且,上部结构柔性的增加也会使得其加速度相应的增加。关键词: 底部隔震; 地震;弹性支座;滑移系统;支座位移; 上部结构加速度;双线性滞回; 等线性。1. 介绍地震隔震系统的研究,逐步成为一种成熟而有效的技术,并且已经用于提高在地震作用下一些重要建筑如学校,医院,工业建筑甚至一些放置敏感仪器的建筑的抗震性能。除了控制地震的破坏范围和程度,还要针对不同建筑的使用要求,选择不同的合适的隔震系统。在隔震系统中,下部土地的震动通过在基础和结构底部间引入一个柔性的转换层与上部结构隔离,从而对上部结构起到减震的作用。这样,隔震系统将底部的基本震动时间变换成一个较大的值传到上部结构去,或者利用阻尼器耗散能量,减少一些能够传到上部结构的动力响应,例如层间位移和每层的加速度都可以显著地减小。也能避免底部隔震结构由于固有频率和地震作用的原频率相同所产生的共振现象,从这一点上说这样的柔性结构对于抵抗地震作用是很合适的。弹性支座和滑移系统是底部隔震结构用于实践中的两种形式,它们都是用在基础和上部结构之间,以减少底部地面的地震作用向上部结构或者桥梁结构的传递。理解不同参数在隔震结构中对结构抗震性能的作用是十分重要的。比如,底部隔震结构中的居民建筑,加速度和顶部位移的控制就是抗震设计中的决定因素。再如,相邻建筑之间距离设定的不合适,可能会成为一个很大的隐患,甚至导致隔震器毁坏的灾难性破坏。这样的破坏和损失能够通过合理估计顶部隔震器的位移和布置隔震器的间距来避免。为了能够预知顶部位移和确定建筑物之间准确的距离,必须提前知道不同的参数对于支座位移和上部结构相应加速度的不同作用。由于建筑物之间距离不恰当造成的破坏,可以通过在隔震器有效作用的允许范围内增加上部结构的加速度,从而减小支座顶部的位移来避免。对于控制地震作用产生的相应反应的数值,特别是控制隔震器的允许位移上来说,不同参数特性的选择是很重要的。隔震系统和底部隔震结构研究的理论已经建立,对于底部隔震结构设计的规范也比较完善。对于非线性隔震系统,规范规定允许使用等线性模型确定的反应谱法对隔震系统进行设计。等线性模型是建立在设计位移上的有效刚度,等粘滞阻尼是从滞回曲线中得到的。等线性模型和准确的非线性模型对于桥梁结构减震作用的比较过去就已经得出结论,结论显示等线性模型能够用于预知准确的非线性模型系统的反应。然而,上面的研究只是局限于将桥梁理想化成一个刚体,隔震器的非线性反应也局限于将铅支座理想化成具有双线性的特性。等线性模型和现实的非线性模型相比,对于上部柔性的结构, 非线性滞回曲线的隔震器以及滑移型的隔震系统,隔震反应的性能是不同的。因此,研究对比两这种模型不同的反应滞回曲线和系统参数是很必要和有趣的。基于非线性底部隔震系统的多层结构的抗震性能正在被研究。具体的研究内容如下:()比较底部隔震的柔性结构在双线性滞回曲线模型和等线性模型下抗震反应的不同;()研究滞回曲线的形状和参数(屈服位移和力)对隔震系统的有效性的作用;()研究上部结构在底部隔震系统作用下的柔性。2. 底部隔震建筑的结构模型图一(a)显示的是目前研究的 N 层底部隔振结构的理想模型。底部隔震结构被模拟成每层都有一个侧向自由度的剪切型隔震结构。图一(a)N 层底部隔振结构的数学模型;(b)双线性滞回模型;(c)隔震器的等线性模型。底部隔震结构设计时需要考虑的几个假设如下:()上部结构在地震激励下保持在弹性极限范围内。由于隔震结构目的是将结构保持在弹性阶段以减少地震反应所产生的响应,这个假设是合理且有效的;()结构的每一层在其自身平面内都被认为是一个刚体,质量被认为是集中在每一层顶部;()柱能够提供侧向刚度,没有竖向变形和质量;()在地震作用下系统的位移只具有水平分量;()没有考虑土地与结构的相互作用。对于研究的系统,主导的运动方程是考虑每个自由度上力的平衡得出的。在地震加速度作用下,上部结构的运动方程用下面矩阵形式表述:其中 , 分别是上部结构的质量,阻尼和刚度矩阵;MsKCss和分别是上部结构中未知的位移,速度和加速。 。和 xxxssTNs .21,.度分量; 和 分别是相应的底部质量块的加速度和地震时地面的加速度; 是影响系。 。b。 。g r数的矢量。在地震加速度作用下,底部质量块的动力方程用下面形式表述:其中 和 分别是隔震系统的底部质量和回复力; 是底层楼面的刚度;mbFk1是底层楼面的阻尼。隔震系统回复力 的计算取定于系统的具体类型,数值模型近c1 b似值也要被运用。3. 隔震器的数学模拟方法在目前的研究中,隔震器的力-位移曲线是由如下条件模拟的:()非线性滞回曲线模型是用双线性模型近似地模拟的;()规范规定用等线性粘滞阻尼模型模拟非线性系统。3.1 隔震器的双线性滞回曲线模型隔震器的非线性力位移曲线用双线性滞回曲线近似模拟,双线性滞回曲线有三个特征参数(见图一(b)):()特征强度 Q()屈服后刚度 k b()屈服位移 q (见图一( b) )选择双线性模型的原因由于它能模拟实践中使用的所有隔震系统。特征强度 Q 与弹性支座的铅芯和滑移型隔震系统的摩擦系数的屈服强度是有联系的。屈服后刚度 k设计时要考虑到能提供一个特殊的隔震周期 T ,T 这样定义的:b b其中 M( )是底部隔震结构的总质量;m 是上部结构第 j 层楼bNjj1 j面的质量。这样,底部隔震系统的双线性滞回曲线模型能够用定义的三个参数来表示 T ,Q,和bq。特征强度 Q 用整个楼层的质量归一化表示,W=Mg(其中 g 是重力加速度)。3.2 隔震器的等线性粘滞阻尼模型根据旧的建筑统一规范和建筑国际规范,隔震器的非线性力位移的特性能够用采取有效弹性刚度和有效粘滞阻尼的等线性模型来代替。隔震系统的力的线性方程能够用下式来表述:其中 是有效刚度;c 2 是有效粘滞阻尼系数; 是有效粘滞阻尼kef efefefMef比;2 是隔震系统的圆频率;T 2 是隔震系统的有效周期。efef/efkef/等线性模型对于每个力循环周期下的有效刚度都是通过试验得到的隔震器的力位移曲线计算出来的,具体的数学表达式如下:其中 F 和 F 是试验中达到位移 和 对应的力的正负值。这样,有效刚度 k是图一(c )所示的滞回曲线正负最大值的连线的斜率。ef每个力循环周期下的隔震器单元的有效粘滞阻尼是这样定义的:其中 E 是每个力循环周期下的能量消耗量。lop定义一个规定的隔震器设计位移 D,则双线性系统的有效刚度和有效阻尼比能够这样表示:4. 运动方程的解答经典的模态叠加方法不能用于这样方程的解答是由如下原因决定的:()由于隔震器的阻尼和上部结构的阻尼有不同之处因而系统是非经典的阻尼系统;()隔震器的力位移曲线被认为是非线性的。因此,运动方程的解答运用的是 NEWMARK 的逐步整数法(Newmarks step-by-step method of intergration) ;并且利用了加速度在极小时间内的线性变换 。解这个运动方t程所采用的时间间隔是 0.02200s(例如 =0.001s)t5. 数值的研究与分析多层底部隔震结构抗震设计研究时采用的是具有双线性和等线性特性的隔震器,并且是在真实的地震运动模型中进行的。研究中选用的地震运动模型有下面三种:Los Gatos Presentation Center 所记录的 1989 年在 Loma Prieta 发生地震的 N00E 波;Sylma Station 所记录的 1994 年在 Northridge 发生地震的 N90S 波;JMA 所记录的1995 年在 Kobe 发生地震的 N00S 波。以上三种地震场地运动中临界阻尼占 2条件下,所测得的位移和加速度的反应谱见图二。由图上可以看出 Loma Prieta, Northridge 和 Kobe 的地震在横坐标 0.64s,0.52s 和 0.36s 上对应的纵坐标的最大加速度分别是 3.559g,1.969g 和 3.606g。这说明从地震数据记录处选择的这三个场地都是坚硬的土壤甚至是岩石地带。研究感兴趣的数值是顶层的绝对加速度和相应的支座位移。因为上部结构楼层间的加速度部分地产生于由于地面震动的加速度所引起的力,上面这两个数值就十分重要了。另一方面,支座位移在隔震系统中的设计也是很关键的。现在的研究发现,上部结构的质量矩阵是一个以每层楼层的质量为特征向量的对角矩阵,因此其特征向量就是定值。而且,隔震结构的底部筏板结构具有这样的质量比 m /m=1。b但是上部结构的阻尼矩阵还不是能很清楚地得到。一般是假设上部结构在每种不同振动的模型下,其阻尼矩阵保持定值。上部结构的阻尼比 一般取 0.02,且在不同s的振动模型下保持不变。上部结构的层间刚度取值是在规定的上部结构的基本时间周期 T 行调整的。上部结构的层数一般取 1 和 5 层。对于一个五层楼的结构,层间s的刚度 k ,k ,k ,k 和 k 分别是按比例取 1,1.5, 2,2.5 和 3。12345图二: 1989 年 Loma Prieta,1994 年 Northridge 和 1995 年 Kobe 地震反应谱5.1 双线性和等线性模型反应的对比在这一节中, 对于底部隔震结构应用双线性和等线性模型在地震作用下的不同反应进行了比较。选择双线性模型是为了能够代替隔震系统中通常使用的力位移模型,如弹性体系统(铅支座)和滑移体系统(摩擦摇摆系统) 。运用等线性模型是考虑到能够合适地选择隔震系统的有效周期 T 和有效粘滞阻尼比 的数值。设计位移 D 取的是ef ef有参数 T 和 的线性隔震系统作用下的上部结构是刚体的隔震器的最大位移。双线eff性滞回曲线,若假设的屈服位移 q 取值是由隔震系统的类型决定,则其相应的参数是在设计位移 D 下的,由有效周期 T 和有效粘滞阻尼比 确定的。从等线性模型中得到ef efT 2s, =0.1,从而计算出 Loma Prieta,Northridge 和 Kobe 三地设计位移的数值分efef别是 53.61cm,34.06cm 和 32.58cm。图三中,在 Loma Prieta1989 年的地震波作用下,运用双线性和等线性隔震模型分别描绘出的一个五层楼的结构,随时间变化的顶层绝对加速度和支座位移的图形。等线性模型的参数是:T 2s, =0.1。而双线性系统,对应于摩擦摇摆系统和铅支座隔震efef器的两个屈服位移分别是 0.0001cm 和 2.5cm.。从等线性系统中得出的相应的上部结构的峰值加速度是 0.528g。这说明运用等线性模型计算出的结构顶部楼层的加速度与实际的双线性滞回模型相比较小。另一方面,在相同的系统中运用双线性滞回模型得出的支座位移的峰值分别是 45.52cm 和 40.17cm,屈服位移分别是 2.5cm 和 0.0001cm,然而运用等线性模型的位移却是 53.06cm。图三:1989 年 Loma Prieta 地震作用下一个五层的底部隔震结构顶层楼面加速度和支座位移的变化(T 2s, =0.1)efef这说明运用等线性模型计算出的底部隔震结构的支座位移与双线性滞回模型相比要大一些。从图四和图五分别描绘的 1994 年 Northridge 地震和 1995 年 Kobe 地震的曲线里也能得出类似的结论。这样我们可以得出如下的结论:与实际的双线性粘滞模型相比,等线性模型对于上部结构的加速度,预测过小;对于支座位移,预测过大。相应的隔震系统中等线性和双线性模型的力位移曲线见图六。图四:1994 年 Northridge 地震作用下一个五层的底部隔震结构顶层楼面加速度(top floor acceleration)和支座位移(bearing displacement)的变化(T 2s, =0.1)efef图五:1995 年 Kobe 地震波作用下一个五层的底部隔震结构顶层楼面加速度(top floor acceleration)和支座位移 (bearing displacement)的变化(T 2s, =0.1)efef图六:等线性和双线性模型的力位移曲线的比较图七显示的是一个五层楼的非隔震和隔震系统在不同地震运动(见图三五)作用下,相应的顶层楼面加速度的 FFT 振幅谱曲线(等线性和双线性模型) 。从图上看出,由等线性和双线性模型中得出的顶层楼面加速度的 FFT 振幅谱曲线有明显的不同。等线性模型中加速度的傅里叶谱的峰值是在 0.5Hz(即对应的隔震频率)附近出现的,别的频率对加速度的贡献不大。然而,在双线性系统中,频率的大部分尤其是高频部分,对上部结构加速度的峰值都具有较大地贡献。更重要的是,双线性系统具有较低的屈服位移(代替滑移系统的位移是 q=0.0001cm) 。上部结构过高频率的加速度贡献,对底部隔震结构中布置的高频率精密仪器是有害的。这样,具有较低屈服位移的底部隔震系统可以将上部结构更多的加速度和更高的频率传递出去,但是这种现象在等线性模型中却不能被实现。图七:等线性和双线性模型下的一个五层底部隔震建筑顶层楼面加速度的 FFT 振幅谱曲线(T 2s, =0.1)efef表一和表二分别显示了一个一层和五层的结构,使用双线性和等线性模型,在地震作用下的最大响应。响应是在三种地震作用下分别对应三个不同的参数:隔震系统的有效周期(T =2,2.5,3s ) ,有效粘滞阻尼比( =0.05,0.1)和屈服位移ef ef(q=0.0001,2.5,5cm)进行的比较。就像前面已经知道的,在所有的地震作用中,双线性模型与所有不同系统参数组合的等线性模型相比,顶层楼面的加速度都偏大。这证实了,若是采用等线性的隔震器模拟双线性力位移特性的隔震器,则在上部结构的加速度估计上将会偏小。等线性模型估计的支座位移的峰值却要比相应双线性模型偏大。但是,在 1995 年 Kobe 地震波作用下的一些试验中发现,等线性模型测得的支座位移峰值 q=2.5cm,小于双线性模型得到的 q=5.0cm。这可能是因为 Kobe 地震运动中,位移图线不同寻常的变化,位移随着时间从 1s 到 3s 地增加不断地在减小(见图二) 。这样,等线性粘滞隔震系统就会过高地估计支座位移的峰值。表一:双线性和等线性模型下单层底部隔震结构的响应峰值( 0.1s )Ts表二:双线性和等线性模型下五层底部隔震结构的响应峰值( 0.5s )Ts图八:1989 年 Loma Prieta 地震作用下一个五层的底部隔震结构对应于不同的屈服位移(yield displacement)产生的不同的顶层楼面加速度( top floor acceleration)和支座位移(bearing displacement) 的变化。图九:1994 年 Northridge 地震作用下一个五层的底部隔震结构对应于不同的屈服位移产生的不同的顶层楼面加速度和支座位移的变化。为了理解双线性滞回曲线形状的变化对隔震器的影响,图八十描绘了 1989 年 Loma Prieta,1994 年 Northridge 和 1995 年 Kobe 三种不同地震波作用下,一个五层楼的结构随着屈服位移 q 的变化,顶层楼面的加速度和支座位移的变化情况。这些曲线体现了三个不同的特征刚度(Q/W=0.05,0.075 和 0.1)和以屈服后刚度为基础的三个不同的隔震时间(T =2,2.5,3s )对应的不同的响应。从图中能看出,随着隔震器屈服位移的增b加,顶层楼面的加速度显著地减小,但是支座位移却显示出了逐渐增加的趋势。这说明隔震器的位移(或者是滞回曲线的形状)对于底部隔震结构抗震性能的作用是很重要的。然而,这个显著的作用不能在等线性模型中实现,因为位移 q 的变化对有效刚度没有作用,而且在较大设计位移下对有效阻尼的作用也甚微(见参考书籍 7 和 8) 。从图八图十中我们还能看出,随着特征刚度 Q 地增加,顶层楼面的加速度在增加,而支座位移却在减小。可以这样理解:隔震器拥有越高的特征刚度,隔震系统保持在弹性阶段的时间越多,系统的柔性也越小,因而能量消耗就越少。这样一来,隔震器特征刚度的增加就会导致上部结构加速度的增加和支座位移的减小。由此我们得出结论,上部结构的抗震性能受双线性滞回曲线的形状和参数的影响很大。5.3 上部结构刚度的影响底部隔震结构的柔性主要是取决隔震系统的性能,因此,研究底部隔震结构时一般将上部结构看作是刚体(见参考书籍 1416) 。但是,将上部结构模拟成刚体和柔性体进行比较来研究地震作用下的响应是很有趣的。图十一显示了一个五层楼的底部隔震结构,当上部结构的基本周期是 T 时,顶层楼面的加速度和支座位移。隔震系统的参数是这s样取值的:隔震周期 T 2s,标准化的特征刚度 Q/W0.05,隔震器不同的屈服位移b分别取的是 q=0.0001,2.4 和 5cm。从图上我们可以看出,当上部结构是刚体( T =0s)s和柔性体(T 0s)时,得到的顶层楼面的加速度有很大的不同。当上部结构的基本周期s增加时,顶层楼面的加速度显著增大。这说明如果上部结构的柔性被忽略不计或者是完全模拟成刚体,则上部结构的加速度将会被估计过底。当隔震系统的屈服位移值较低时,上部结构的加速度增加得更显著。然而,支座位移却不受上部结构柔性大小的影响。在不同地震条件下,当 T 3s 时,上部结构柔性的相似作用可以在图十二中看出。由此b可见,上部结构的柔性能够增加其加速度值,但是对支座位移的影响不大。图十:1995 年 Kobe 地震波作用下一个五层的底部隔震结构对应于不同的屈服位移产生的不同的顶层楼面加速度和支座位移的变化。图十一:上部结构的柔性对于一个五层的底部隔震建筑的顶层楼面的绝对加速度和支座位移的影响(T 2s,Q/W0.05)b图十二:上部结构的柔性对于一个五层的底部隔震建筑的顶层楼面的绝对加速度和支座位移的影响(T 3s,Q/W0.05)b6. 结论我们研究了隔震器特征的多个参数对多层底部隔震结构在地震作用下的影响。将等线性和双线性力位移模型对于隔震结构在地震激励下的不同作用进行了比较。对隔震器滞回曲线的形状和上部结构柔性大小对底部隔震结构抗震性能的影响也进行了研究。从目前的研究结果来看,能得出下面的结论:()规范规定采用的等线性粘滞阻尼模型的隔震器与双线性滞回曲线的隔震器相比,在上部结构的加速度上估计过底,在支座位移上估计过高。()采用等线性隔震器的底部隔震结构和双线性隔震器的底部隔震结构相比,上部结构的加速度上有很大的不同。()底部隔震结构抗震性能的大小,受隔震器双线性滞回曲线形状的影响很大。()屈服位移较低的隔震系统(如滑移型隔震系统)将会向上部结构传递更多的地震加速度和更高的频率。但在等线性模型中,这种现象并没有出现。()上部结构的柔性增大会相应地增加其加速度。但是支座位移却受上部结构柔性大小的影响较小。参考资料:1. Kelly JM. 抗震结构底部隔震:评述和参考 土动力学和抗震工程学1986;13:202162. Buckle IG,Mayes RL,隔震系统的历史,运用和性能 全球评述 地震反应谱1990;6:1612023. Jangid RS,Datta TK,底部隔震建筑的隔震性能 建筑和结构 1995;110(2):1862034. Stabton J,Roeder C,隔震系统的优点和局限性 地震反应谱 1990;6:223445. Kelly JM,底部隔震线性理论和设计 地震反应谱 1990;6:223446. Kelly JM,橡胶支座运用于结构抗震设计 纽约:Springer 出版社;19977. Naeim F,Kelly JM,底部隔震结构的设计 John Wiley&Sons 公司;20008. 建筑统一规范 国际建筑正式会议 加利福尼亚:Whittier;19979. 建筑统一规范 国际规范协会 200010. Turkington DH,Carr AJ,Cooke N,Moss PJ,铅支座在桥梁结构中的设计。结构工程学报,ASCE1989 ;115:3017 3011. Hwang JS,Sheng LH,底部隔震桥梁运用铅支座的等弹性抗震分析 结构工程1994;16:201912. Hwang JS,桥梁隔震的等线性分析方法。结构工程学报,ASCE1996 ;122:927613. Hwang JS,Chiou JM,隔震中铅支座的等线性模型。结构工程 1996;18:52836 14. Younis CJ,Tadjbakhsh IG,刚体滑移结构对于的底部激励响应 机械工程学报,ASCE1984; 110:4173215. Chen Y,Ahmadi G,底部隔震结构的抗风效应 机械工程学报,ASCE1992; 118:1708 2716. Jangid RS,Kelly JM,底部隔震结构的扭转位移 地震反应谱 2000;16:44354指导教师意见:指导教师签字:年 月 日注:此表单独作为一页。Influence of isolator characteristics on the responseof base-isolated structureVasant A. Matsaar 1Z.S. JanidsAbstractThe influence of isolator characteristics on the seismic response of multi-story base-isolated structure is investigated. The isolated building is modeled as a shear type structure with lateral degree-of-freedom at each floor. The isolators are modeled by using two different mathematical models depicted by bi-linear hysteretic and equivalent linear elastic-viscous behaviors. The coupled differential equations of motion for the isolated system are derived and solved in the incremental form using Newmarks step-by-step method of integration. The variation of top floor absolute acceleration and hearing displacement for various bi-linear systems under different earthquakes is computed to study the effects of the shape of the isolator hysteresis loop. The influence of the shape of isolator force-deformation loop on the response of isolated structure is studied under the variation of important system parameters such as isolator yield displacement, superstructure flexibility, isolation time period and number of story of the base-isolated structure. It is observed that the code specified equivalent linear elastic viscous damping model of a bi-linear hysteretic system overestimates the design bearing displacement and underestimates the superstructure acceleration. The response of base-isolated structure is significantly influenced by the shape of hysteresis loop of isolator. The low value of yield displace-ment of isolator (i.e. sliding type isolation systems) tends to increase the superstructure accelerations associated with high frequencies. Further, the superstructure acceleration also increases with the increase of the superstructure flexibility.keywords: Base isolation; Earthquake; Elastomtric bearing Sliding system; Bearing displacement; Superstructure acceleration; Bi-linear hysteresis;Equivalent linear.1 IntroductionSeismic isolation, which is now recognized as a mature and efficient technology, can be adopted to improve the seismic performance of strategically important buildings such as schools, hospitals, industrial structures etc., in addition to the places where sensitive equipments are intended to protect from hazardous effects during earthquake 1-3. Based on the extent of control to be achieved over the seismic response, the choice of the isolation system varies and thereupon its design is done to suit the requirements of use of the structure. In seismically base-isolated systems, the superstructure is decoupled from the earthquake ground motion by introducing a flexible interface between the foundation and the base of structure. Thereby, the isolation system shifts the fundamental time period of the structure to a large value and/or dissipates the energy in damping, limiting the amount of force that can be transferred to the super structure such that inter-story drift and floor accelerations are reduced drastically. The matching of fundamental frequencies of base-isolated structures and the predominant frequency contents of earthquakes is also consequently avoided, leading to a flexible structural system more suitable from earthquake resistance viewpoint. The two most common types of base isolation systems adopted in practice utilize either rubber bearings or sliding systems between the foundation and superstructure for the purpose of isolation from ground motions in the buildings as well as bridges. It is very essential to understand the different parameters affecting the response of base-isolated structure when used for seismic protection of the structures. Especially in case of the base-isolated structures, that houses sensitive equipments, determination of acceleration imparted and associated peak displacement are the key issues for the design engineer 4. Moreover, the pounding and structural impacts in case of baseisolated structures made upon the adjacent structures, when separation gap distances are inadequate, become a major concern because these phenomena may lead tocatastrophic failures leading to immense isolator damage. Such failures and damages can be avoided by properly estimating the peak isolator displacement and recommendation of appropriate isolation gap distances. In order to predict peak displacement and determine accurate separation gap distance requirement for a base-isolated structure, it is mandatory to know, in prior, the different parameters that affect the bearing displacement and its consequent effect on thesuperstructure acceleration. The failures due to such impacts can be avoided by reducing the peak bearing displacement by compromising with increase in superstructure acceleration to an acceptable level i.e. tolerable reduction in effectiveness of isolation. Selection of different parameters characterizing an isolation system is important in view of keeping a control over response quantities especially the excessive bearing displacement at isolator level. The behavior of isolation systems and the baseisolated structures is now well established and codes are developed for designing the base-isolated structures59. For non-linear isolation systems, the codes allow to use the equivalent linear model to permit the use ofresponse spectrum method for designing the isolated structures. The equivalent linear models are based on the effective stiffness at the design displacement and the equivalent viscous damping is evaluated from the area of the hysteresis loop. The comparison of equivalentlinear and actual non-linear model for the response of isolated bridge structures had been demonstrated in thepast 1013 and shown that the equivalent linear model can be used for predicting the actual non-linear response of the system. However, the above studies were restricted to the bridge idealized as a rigid body and the non-linear behavior of the isolator was limited to the leadrubber bearings idealized by bi-linear characteristics. The equivalent linear model may give different response of isolated structures in comparison to the actual non-linear model for flexible superstructures and the type of non-linear hysteresis loop of the isolator associated with sliding type isolation systems. Therefore, it will be interesting to study the comparison of the two models for different hysteretic behavior of theisolator and the system parameters.Here-in, the seismic response of multi-story structure supported on non-linear base isolation systems is investigated. The specific objectives of the study are: (i) to compare the seismic response of base-isolated flexible building obtained from various bi-linear hysteretic model and its equivalent linear model; (ii) to study the influence of shape of the isolator hysteresis loop and its parameters (i.e. yield displacement and force) on the effectiveness of the isolation system and (iii) to investigate the effects of superstructure flexibility on the response of base-isolated structures.2. Structural model of base-isolated buildingFig. 1(a) shows the idealized mathematical model of the N-story base-isolated building considered for the present study. The base-isolated building is modeled as a shear type structure mounted on isolation systems with one lateral degree-of-freedom at each floor.Following assumptions are made for the structural system under consideration:1. The superstructure is considered to remain within the elastic limit during the earthquake excitation. This is a reasonable assumption as the isolation attempts to reduce the earthquake response in such a way that the structure remains within the elastic range.2. The floors are assumed rigid in its own plane and the mass is supposed to be lumped at each floor level.3. The columns are inextensible and weightless providing the lateral stiffness.4. The system is subjected to single horizontal component of the earthquake ground motion.5. The effects of soilstructure interaction are not taken into consideration.For the system under consideration, the governing equations of motion are obtained by considering the equilibrium of forces at the location of each degrees of-freedom. The equations of motion for the superstructure under earthquake ground acceleration are expressed in the matrix form aswhere Ms, Cs and Ks are the mass, damping and stiffness matrices of the superstructure, respectively; are the unknown relative floor displacement, velocity and .12,.,TsNssandxx。 。acceleration vectors, respectively; and are the relative acceleration of base mass and 。 。b。 。xgearthquake ground acceleration, respectively; and r is the vector of influencecoefficients.The corresponding equation of motion for the base mass under earthquake ground acceleration is expressed bywhere mb and Fb are the base mass and restoring force developed in the isolation system, respectively; k1 is the story stiffness of first floor; and c1 is the first story damping. The restoring force developed in the isolation system, Fb depends upon the type of isolation systemconsidered and approximate numerical models shall be used.3. Mathematical modeling of isolatorsFor the present study, the force-deformation behavior of the isolator is modeled as (i) non-linear hysteretic represented by the bi-linear model and (ii) the code specified equivalent linear elasticviscous damping model for the non-linear systems. A comparison of the response of the isolated structure by using the above two models will be useful in establishing the validity of the code specified equivalent linear model.3.1. Bi-linear hysteretic model of isolatorsThe non-linear force-deformation behavior of the isolation system is modeled through the bi-linear hysteresis loop characterized by three parameters namely:(i) characteristic strength, Q (ii) post-yield stiffness, kb and (iii) yield displacement, q (refer Fig. 1(b). The bi-linear behavior is selected because this model can be used for all isolation systems used in practice. The characteristic strength, Q is related to the yield strengthof the lead core in the elastomeric bearings and friction coefficient of the sliding type isolation systems. The post-yield stiffness of the isolation system, kb is generally designed in such a way to provide the specific value of the isolation period, Tb expressed as:where M( )is the total mass of the base-isolated structure; and mj is the mbNjj1mass of jth floor of the superstructure.Thus, the bi-linear hysteretic model of the base isolation system can be characterized by specifying the three parameters namely Tb, Q and q. The characteristic strength, Q is normalized by the weight of the building, W=Mg (where g is the gravitational acceleration3.2. Equivalent linear elasticviscous damping modelof isolators As per Uniform Building Code 8 and International Building Code 9, the non-linear force-deformation characteristic of the isolator can be replaced by an equivalent linear model through effective elastic stiffness and effective viscous damping. The linear force developed in the isolation system can be expressed as :where is the effective stiffness; c 2 is the effective viscous damping kef efefefMconstant; is the effective viscous damping ratio; 2 =Teff is the effective fTef/isolation frequency; and T 2 is theefkef/effective isolation period.The equivalent linear elastic stiffness for each cycle of loading is calculated from experimentally obtained force-deformation curve of the isolator and expressed mathematically as:where F+ and F_ are the positive and negative forces at test displacements D+ and D, respectively. Thus, the keff is the slope of the peak-to-peak values of the hysteresis loop as shown in Fig. 1(c).The effective viscous damping of the isolator unit calculated for each cycle of loading is specified as where E is the energy dissipation per cycle of loading.lopAt a specified design isolation displacement, D, the effective stiffness and damping ratio for a bi-linear system are expressed as:4. Solution of equations of motionClassical modal superposition technique cannot be employed in the solution of equations of motion here because (i) the system is non-classically damped because of the difference in the damping in isolation system compared to the damping in the superstructure and (ii) the force-deformation behavior for the isolation systems considered is non-linear. Therefore, the equations of motion are solved numerically using Newmarks method of step-by-step integration; adopting linear variation of acceleration over a small timeinterval of Dt. The time interval for solving the quations of motion is taken as 0.02/200 s (i.e. =0:0001 s).t5. Numerical studySeismic response of a multi-story base-isolated building is investigated under various real earthquake ground motions for bi-linear and equivalent linear isolator characteristics. The earthquake motions selected for the study are N00E component of 1989 LomaPrieta earthquake recorded at Los Gatos Presentation Center, N90S component of 1994 Northridge earthquake recorded at Sylmar Station and N00S component of 1995 Kobe earthquake recorded at JMA. The peak ground acceleration (PGA) of Loma Prieta, Northridge and Kobe earthquake motions are 0.57, 0.60 and 0.86 g, respectively. The displacement and acceleration spectra of the above ground motions for 2% of the critical damping are shown in Fig. 2. The maximum ordinates of the pseudo-acceleration are 3.559, 1.969 and 3.606 g occurring at period of 0.64, 0.52 and 0.36 s for Loma Prieta, Northridge and Kobe earthquakes, respectively. This implies that the selected ground motions are recorded on stations having firmsoil or rocky terrain. The response quantities of interest are the top floor absolute acceleration and relative bearing displacement. The above response quantities are of importance because floor accelerations developed in the superstructure are proportional to the forces exerted because of earthquake ground motion. On the otherhand, the bearing displacements are crucial in the design of isolation systems. For the present study, the mass matrix of the superstructure Ms is a diagonal matrix and characterized by the mass of each floor,which is kept constant. Further, the base raft of the isolated structure is considered such that the mass ratio, mb/m=1. The damping matrix of the superstructure, Cs, is not known explicitly. It is constructed by assuming the modal damping ratio in each mode of vibration for superstructure, which is kept constant. The damping ratio of the superstructure, ns, is taken as 0.02 and kept constant for all modes of vibration. The inter-story stiffness of the superstructure is adjusted such that a specified fundamental time period of the superstructure, Ts is achieved. The number of story in the superstructure is considered as 1 and 5. For the five-story building, the inter-story stiffness k1, k2, k3, k4 and k5 are taken in proportion of 1, 1.5, 2, 2.5 and 3, respectively.5.1. Comparison of response for bi-linear and equivalentlinear modelIn this section, a comparison of earthquake response of base-isolated structure is made for bi-linear and equivalent linear model of isolation systems. The bilinear behavior is selected in a way to represent the force-deformation behavior of the commonly used isolation systems such as elastomeric (i.e. leadrubber bearings) and sliding systems (i.e. friction pendulum system). The equivalent linear behavior is considered by selecting the appropriate values of the effective isolation time period, Teff and the effective viscous damping, beff. The design displacement, D, is considered as the maximum isolator displacement of a rigid superstructure isolated by the linear isolation system having the parameters Teff and beff. For the assumed value of the yield displacement, q, depending upon the type of isolation system, the parameters of the bi-linear hysteresisloop are derived such that it has an effective time period as Teff and damping ratio beff from Eqs. (7) and (8), respectively, at the design displacement D. The values of design displacement, D, used for such transformation are 53.61, 34.06 and 32.58 cm under Loma Prieta, Northridge and Kobe earthquake ground motions, respectively, obtained from equivalent linear model with T 2s and =0.1.efefIn Fig. 3, time variation of top floor absolute accelerationand bearing displacement of a five-story building is plotted for linear and bi-linear isolator models under Loma Prieta, 1989 earthquake motion. The parameters of the equivalent linear system consideredare: T 2s and =0.1. For the bi-linear system, two values of yield displacement i.e. efef0.0001 cm and 2.5 cm are considered which corresponds to friction pendulum system and leadrubber bearing isolators, respectively. The peak superstructure acceleration obtained by bi-linear hysteretic model are 0.665 and 0.701 g for the yield displacement of 2.5 and 10_4 cm, respectively. The corresponding peak superstructure acceleration obtained from the equivalent linear m
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:减震器对底部隔震结构抗震反应的作用【中文7500字】
链接地址:https://www.renrendoc.com/p-6099441.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!