位置控制系统.doc

位置控制系统【中文2120字】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:6099462    类型:共享资源    大小:41.46KB    格式:RAR    上传时间:2017-11-16 上传人:闰*** IP属地:河南
13
积分
关 键 词:
位置 控制系统 中文
资源描述:
位置控制系统【中文2120字】,位置,控制系统,中文
内容简介:
【中文 2120 字】位置控制系统调节器的任务是在扰动条件下将某物理量的值维持在一个固定范围内,因此它是一类重要且典型的闭环系统。伺服机构的任务就是跟踪输入指令信号,在工程设计中,它与调节器具同等的重要性并且更具有挑战性。这种装置中的一个例子就是位置控制伺服机构,它必须将施加在当地指挥站里操纵轮上的运动在某个遥远的地方再现出来。输出运动可被用来将一个很重的物体(如导弹发射架)移动到一个期望的位置上,于是指令的功率放大与精确再现是必不可少的。信号可以通过机械连接或通过液压导管、气动导管或电览直接传送。与机械连接不同,最迅速的传送方式是电连接,这是非常普遍的,尽管并不总是如此。当它被应用时,机械输入与输出信号首先被转换成一定比例的电信号,然后通过导线将其传送到比较装置上,比较装置会产生一个正比于误差的信号。低功率的误差信号被送到放大器,放大器从外部电源获得功率并将可控的功率传送到电动机。传感器与比较器元件的组合构成了误差检测器放大器就是控制器电动机与它的变速箱构成了输出元件。如果电动机是用电的,那么放大器可以是纯电的。若电动机是液压的或气功的,那么放大器必须是电-液的或电-气的。需强调的是,这个系统的任务就是供可旋转的物体尽可能地复现操纵轮的无能运动。让我们考虑当物体一开始处于静止状态,操纵轮的位置被非常快地转动了一个角度 后,将会出现什么情况。该物体一开始没有速度并且输出位置 是零,于i 0是一个信号 k 立刻会出现在放大器的输入端上;放大器的输出被传送到电动机上,i电动机随后驱动这个物体使误差减少。当 接近 时,误差变得很小,于是传送到0i电动机上的功率也随着减少。所设计的系统通常使物体恰好超过所要求的位置;既然 此时比 大,误差变负,电动机使物体停止并且改变方向在物体最终稳定在所0i要求的位置( = )之前,可能会产生达到给定值或进一步超过给定值的现象。0i只有当完全一致时,放大器的输入才为零,电动机被迫朝一个方向或另一个方向转动直至所有的运动都停止。因此只有放大器的输入信号为零时(即当输出位量全与指令一样时) ,电动机才会停止工作。从上面的讨论我们可以知道,除非精心设计,否则相当有可能在期望位置附近振荡加剧而不是快速衰减。振荡加剧的系统是不稳定的。因此在控制工程中的许多设计工作都与产生一个稳定的系统有关。当然,适当的稳定性仅仅是几个要求中的一个。另一项要求是如实地复现各类输入信号。我们已经看到,图 34.1 所示的系统不可能在任何程度上复现输入位置的突然变化.另一类输入指令在与指令相同的速度上,但是在位置上较输入有一个小的角度滞后。输入与输出位置之间的细微差别将具有这样的数量级,使得电机产生一个足以使物体克服摩擦力矩并以所需的速度转动的输出力矩。误差不能为零,否则电动机将会停止并且新的误差又会重新产生。因此很明显,在静止条件下当输出 自动地与指令 一致时,在动态重要条件0i下,输出运动只会逼近指令的运动。然而这个逼近程度通常正当高,足以克服许多物理问题。例如某类型自动控制的仿形铣床的跟踪精度已达到 0.0001 英寸。定位控制系统的另一项任务是负载剧烈变化干扰下,它必须有能力保持输出位置与指令相等。例如,无论是否存在随机阵风,发射架必须要与期望方向保持一致。如果进行正确的设计,位置控制系统将能够实现相当好的调整用以抵消这类负载的扰动,但是一个固定的负载扰动将会在输出和指令之间不可避免地产生一个小的角偏差。在系统中,如果这种角偏差是不容许的,那么必须用更加复杂类型的控制器。在这三种情况下,系统(或一对极点)分别称为欠阻尼(0 1) 。这些术语起源于系统的阶跃响应。这是对伺服系统(输出仿效输入的系统)或随动系统(输出跟随输入的系统)的标准实验形式。当 时,此系统对单位阶跃输入的响应可以容易地表示为 )sin(1)(2tetytn其中, 。1cos固定不变而 为不同数值时的阶跃响应,当 很小时,响应陡升到峰值,然后n一直振荡到最终的稳态值为止。超调量定义为峰值超过稳态值的百分数。当阻尼比增加时,超调量就减小,振荡也随之而变弱,直至 ,系统的响应就变成单调的1了。当 1,响应就更慢了。但是这一结论,对于既有极点又有零点的传递函数不一定能适用。除超调量外,调整时间也是一个重要的指标。调整时间已定义为系统的响应平稳在最终值的某个允许范围(如 5)内所经历的时间。阶跃响应的第三个有用的指标是上升时间,它通常定义为阶跃响应从其最终值的 10上升至 90所经历的时间。另一个可用以代替上升时间的指标是滞延时问,将它定义为系统响应达到其最终值的一半所需要的时间。 本例中的超调量只与阻尼比 (复数极点的角度 )有关。而调整时间只由 n(复数极点的实部)决定。上升时间则决定于 和 ,或者决定于 和 。n上升时间、超调量和调整时间常常是用来说明阶跃响应特点的三个指标。一般来说,在有复数极点的二阶系统中, 的值愈大,系统的响应愈快,即上升时n间和调整时间愈小。另一方面, 的值愈小,超调量愈大,振荡愈厉害。(极点在 处)被公认为一种“最优 ”阻尼比。这是因为在例 2 这一70.o45特定系统中,它对应于一个超调量不超过 5时能够达到的最快响应( 固定不变)。n但是,读者不应该由这一例子就引出阻尼比与超调量之间关系的普遍结论,因为把一个零点引入传递函数的分子可能完全改变这种情况。The Position Control SystemThe regulator, whose object is to maintain the value of some physical quantity at a fixed level in spite of disturbances, is an important example of a closed loop system. Equally important and more challenging in engineering design is the servo mechanism whose object is to follow input commands. An example of such a device is the position control servo mechanism which must reproduce at some remote point the motion applied to a hand wheel located at a local command station. The output motion might be used to drive a heavy object (such as a missile launcher) into a required position; power amplification of the command and accurate reproduction are thus necessary.The signals can be transmitted by direct mechanical linkage or by hydraulic, pneumatic, or electric conduit. Apart from mechanical linkage the most rapid transmission may be achieved with electrical connection and this is often but not always used. Where it is used, the mechanical input and output signals are first converted into proportional electrical signals and then transmitted through wires to a subtracting device which produces a signal proportional to the error. The low power error signal is used to drive an amplifier which also receives power from an external source and delivers controlled power to the motor.The combination of transducers and subtracting element form the error detector, the amplifier is the controller and the motor together with its gear box form the output element.The amplifier may be purely electrical if the motor is electrical but must be either electro-hydraulic or electro-pneumatic if the motor is either hydraulic or pneumatic.It is emphasized that the object of the system is to make the Rota table mass copy as nearly as possible the motion of the handweel. Let us consider what will happen if the position of the hand wheel is turned very rapidly through an angle , the mass being iinitially at rest. Initially the mass has no velocity and the output position is zero, thus a 0signal k instaneously appears at the terminals of the amplifier; power from the source is iallowed to reach the motor which then begins to drive the mass so as to reduce the error. As approaches the error becomes negative and the motor forces the mass to stop and 0ireverse direction. Some undershoots and further overshoots will then probably take place before the mass finally settles at the required position ( equals to ). Only when exact 0icoincidence occurs does the amplifier receive zero signals and the motor is forced to move either one way or the other until all motion dies away. The motor can therefore only come to rest when the signal entering the amplifier is zero (I. e. when the output position is exactly equal to the command ).iIt becomes evident from the above discussion that unless very great care is taken in the design, it is quite possible that the oscillations about the desired position will build up instead of dying away quickly. A system in which oscillations build up is said to be unstable and much of the design work in control engineering is associated with producing a stable system. Adequate stabilities, soft course, only one of several requirements. Another requirement is faithful reproduction of a variety of input signals. Another type of input command might consist of hand wheel motion of constant velocity. The system would then respond with an oscillatory transient and the mass would finally settle down with a velocity equal to the command but with a position lagging the command by a small angle. The slight difference between input and output positions would be of such magnitude as to produce an output torque from the motor sufficient to drive the mass at the required velocity against frictional torques. The error could not be zero otherwise the motor would stop and the error would then build up.It is thus apparent that whilst the out will automatically align itself with the 0command under static conditions, under dynamic conditions the output motion only iapproximates to that of command. The closeness of the approximation can however usually be made as good as is necessary to overcome most physical problems; for example, in certain types of automatically controlled profile milling machines a tracking accuracy to 0.0001 inch has been achieved.Another object of the position control system is that it must be capable of holding the output position equal to the command in the presence of severe load disturbances. For example, a launcher must remain pointing in the desired direction regardless of random gusts of wind. The position control system of Fig.34.1. If correctly designed, would be able to achieve quite good regulation against load disturbance of this kind but a steady load disturbance would inevitably produce a small misalignment between output and command. In systems where such a misalignment would be intolerable, a more sophisticated type of controller must be used.In these three cases,the system(or the pair of poles)is said to be under damped(0 1), respectively. The terms arise from the step response of the system. It is a standard test for servo or tracking systems in which the output is supposed to follow (or track) the input. For 0 1, the response is even slower. However,this conclusion does not necessarily carry over to transfer functions with zeros as well as poles. In addition to overshoot,settling time is an important consideration. It was defined in Example 1 as the time which elapses before the response settles to within some tolerance (say 5%) of its final value. A third useful parameter of the step response 1s its rise time, often defined as the time which elapses while it rises from 10% to 90of its final value. An alternative to rise time is delay time, which will be defined as the time required for the response to reach half its final value.The amount of overshoot depends only upon the damping ratio (the angle of the complex poles) while the settling time is determined solely by (the real part of the ncomplex poles). The rise time depends upon both and , or equivalently,upon and n .Rise time,overshoot,and settling time,the three parameters most commonly used to characterize step response,are illustrated in Fig. 26. 4. Generally speaking, a large value of in a second-order system with complex poles indicates a fast response,I. e., a nsmall rise time and settling time. Overshoot and oscillations, on the other hand, are large for small values of .The value (poles at ) is widely accepted as assort of “optimal” damping 70o45ratio. This is because for the particular system of Example 2, it corresponds to about as fast a response as can be achieved (for fixed ) without exceeding 5% overshoot. However, nthe reader should beware of the temptation to draw general conclusions about the relation between damping ratio and overshoot from this example since the introduction of a zero in numerator of the transfer function can radically alter the situation.位置控制系统调节器的任务是在扰动条件下将某物理量的值维持在一个固定范围内,因此它是一类重要且典型的闭环系统。伺服机构的任务就是跟踪输入指令信号,在工程设计中,它与调节器具同等的重要性并且更具有挑战性。这种装置中的一个例子就是位置控制伺服机构,它必须将施加在当地指挥站里操纵轮上的运动在某个遥远的地方再现出来。输出运动可被用来将一个很重的物体(如导弹发射架)移动到一个期望的位置上,于是指令的功率放大与精确再现是必不可少的。信号可以通过机械连接或通过液压导管、气动导管或电览直接传送。与机械连接不同,最迅速的传送方式是电连接,这是非常普遍的,尽管并不总是如此。当它被应用时,机械输入与输出信号首先被转换成一定比例的电信号,然后通过导线将其传送到比较装置上,比较装置会产生一个正比于误差的信号。低功率的误差信号被送到放大器,放大器从外部电源获得功率并将可控的功率传送到电动机。传感器与比较器元件的组合构成了误差检测器放大器就是控制器电动机与它的变速箱构成了输出元件。如果电动机是用电的,那么放大器可以是纯电的。若电动机是液压的或气功的,那么放大器必须是电-液的或电-气的。需强调的是,这个系统的任务就是供可旋转的物体尽可能地复现操纵轮的无能运动。让我们考虑当物体一开始处于静止状态,操纵轮的位置被非常快地转动了一个角度 后,将会出现什么情况。该物体一开始没有速度并且输出位置 是零,于i 0是一个信号 k 立刻会出现在放大器的输入端上;放大器的输出被传送到电动机上,i电动机随后驱动这个物体使误差减少。当 接近 时,误差变得很小,于是传送到0i电动机上的功率也随着减少。所设计的系统通常使物体恰好超过所要求的位置;既然 此时比 大,误差变负,电动机使物体停止并且改变方向在物体最终稳定在所0i要求的位置( = )之前,可能会产生达到给定值或进一步超过给定值的现象。0i只有当完全一致时,放大器的输入才为零,电动机被迫朝一个方向或另一个方向转动直至所有的运动都停止。因此只有放大器的输入信号为零时(即当输出位量全与指令一样时) ,电动机才会停止工作。从上面的讨论我们可以知道,除非精心设计,否则相当有可能在期望位置附近振荡加剧而不是快速衰减。振荡加剧的系统是不稳定的。因此在控制工程中的许多设计工作都与产生一个稳定的系统有关。当然,适当的稳定性仅仅是几个要求中的一个。另一项要求是如实地复现各类输入信号。我们已经看到,图 34.1 所示的系统不可能在任何程度上复现输入位置的突然变化.另一类输入指令在与指令相同的速度上,但是在位置上较
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:位置控制系统【中文2120字】
链接地址:https://www.renrendoc.com/p-6099462.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!