外文翻译--伪形的机械结构优化构形理论  英文版.pdf_第1页
外文翻译--伪形的机械结构优化构形理论  英文版.pdf_第2页
外文翻译--伪形的机械结构优化构形理论  英文版.pdf_第3页
外文翻译--伪形的机械结构优化构形理论  英文版.pdf_第4页
外文翻译--伪形的机械结构优化构形理论  英文版.pdf_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ORIGINALARTICLEPseudo-constructaltheoryforshapeoptimizationofmechanicalstructuresJeanLucMarcelinReceived:10January2007/Accepted:1May2007/Publishedonline:25May2007#Springer-VerlagLondonLimited2007AbstractThisworkgivessomeapplicationsofapseudo-constructaltechniqueforshapeoptimizationofmechanicalstructures.Inthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedlikelimitationsoroptimizationconstraints.Twoapplicationsarepresented;thefirstonedealswiththeoptimizationoftheshapeofadropofwaterbyusingageneticalgorithmwiththepseudo-constructaltechnique,andthesecondonedealswiththeoptimizationoftheshapeofahydraulichammersrearbearing.KeywordsShapeoptimization.Constructal.Geneticalgorithms1IntroductionThispaperintroducesapseudo-constructalapproachtoshapeoptimizationbasedontheminimizationofthetotalpotentialenergy.Wearegoingtoshowthatminimizingthetotalpotentialenergyofastructuretofindtheoptimalshapemightbeagoodideainsomecases.Thereferencetotheconstructaltheorycanbejustifiedinsomewayforthefollowingreasons.AccordingtoBejan1,shapeandstructurespringfromthestruggleforbetterperformanceinbothengineeringandnature;theobjectiveandconstraintsprincipleusedinengineeringisthesamemechanismfromwhichthegeometryinnaturalflowsystemsemerges.Bejan1startswiththedesignandoptimizationofengineeringsystemsanddiscoversadeterministicprincipleforthegenerationofgeometricforminnaturalsystems.Thisobservationisthebasisofthenewconstructaltheory.Optimaldistributionofimperfectionisdestinedtoremainimperfect.Thesystemworksbestwhenitsimperfectionsarespreadaroundsothatmoreandmoreinternalpointsarestressedasmuchasthehardestworkingparts.Seeminglyuniversalgeometricformsunitetheflowsystemsofengineeringandnature.Bejan1advancesanewtheoryinwhichheunabashedlyhintsthathislawisinthesameleagueasthesecondlawofthermodynamics,becauseasimplelawispurportedtopredictthegeometricformofanythingaliveonearth.Manyapplicationsoftheconstructaltheoryweredevelopedinfluidsmechanics,inparticularfortheoptimizationofflows210.Ontheotherhand,thereexists,toourknowledge,littleexamplesofapplicationsinsolidsorstructuresmechanics.Sowehaveatleasthalfofthereferencestopapersinfluiddynamics(mostofthesameauthor),becausetheconstructalmethodwasdevelopedfirstbythesameauthor,AdrianBejan,withonlyreferencestopapersinfluiddynamics.Theconstructaltheoryrestsontheassumptionthatallcreationsofnatureareoveralloptimalcomparedtothelawswhichcontroltheevolutionandtheadaptationofthenaturalsystems.Theconstructalprincipleconsistsofdistributingtheimperfectionsaswellaspossible,startingfromthesmallestscalestothelargest.Theconstructaltheoryworkswiththetotalmacroscopicstructurestartingfromtheassemblyofelementarystruc-tures,bycomplyingwiththenaturalrulesofoptimaldistributionoftheimperfections.Theobjectiveistheresearchoflowercost.IntJAdvManufTechnol(2008)38:16DOI10.1007/s00170-007-1080-2J.L.Marcelin(*)LaboratorieSolsSolidesStructures3S,UMRCNRSC5521,DomaineUniversitaire,BPn53,38041GrenobleCedex9,Francee-mail:Jean-Luc.Marcelinujf-grenoble.frHowever,aglobalandmacroscopicsolutionfortheoptimizationofmechanicalstructureshavingleastcostastheobjectivecanbeveryclosetotheconstructaltheory,fromwherethetermpseudo-constructalcomes.Theconstructaltheoryisapredictivetheory,withonlyonesingleprincipleofoptimizationfromwhichallrises.Thesameappliestothepseudo-constructalstepwhichisthesubjectofthisarticle.Thesingleprincipleofoptimiza-tionofthepseudo-constructaltheoryistheminimizationoftotalpotentialenergy.Moreover,inourexamplespresentedhereafter,thepseudo-constructalprinciplewillbeassociatedwithageneticalgorithm,withtheresultthatouroptimizationwillbeveryclosetothenaturallaws.Theobjectiveofthispaperisthustoshowhowthepseudo-constructalstepcanapplytothemechanicsofthestructures,andinparticulartotheshapeoptimizationofmechanicalstructures.Thebasicideaisverysimple:amechanicalstructureinabalancedstatecorrespondstoaminimaltotalpotentialenergy.Inthesameway,anoptimalmechanicalstructuremustalsocorrespondtoaminimaltotalpotentialenergy,anditisthisobjectivewhichmustintervenefirstoveralltheothers.Itisthisideawhichwillbedevelopedinthisarticle.Twoexampleswillbepresentedthereafter.Theideatominimizetotalpotentialenergyinordertooptimizeamechanicalstructureisnotbrandnew.Manypapersalreadydealwiththisproblem.Whatisnew,istomakethisapproachsystematic.Theonlyobjectiveofoptimizationbecomestheminimizationofenergy.InGosling11,asimplemethodisproposedforthedifficultcaseofform-findingofcablenetandmembranestructures.Thismethodisbaseduponbasicenergyconcepts.Atruncatedstrainexpressionisusedtodefinethetotalpotentialenergy.ThefinalenergyformisminimizedusingthePowellalgorithm.InKannoandOhsaki12,theminimumprincipleofcomplementaryenergyisestablishedforcablenetworksinvolvingonlystresscomponentsasvariablesingeometricallynonlinearelasticity.Inordertoshowthestrongdualitybetweentheminimizationproblemsoftotalpotentialenergyandcomplementaryenergy,theconvexformulationsoftheseproblemsareinvestigated,whichcanbeembeddedintoaprimal-dualpairofsecond-orderprogrammingproblems.InTaroco13,shapesensitivityanalysisofanelasticsolidinequilibriumispresented.Thedomainandboundaryintegralexpressionsofthefirstandsecond-ordershapederivativesofthetotalpotentialenergyareestablished.InWarner14,anoptimaldesignproblemissolvedforanelasticrodhangingunderitsownweight.Thedistributionofthecross-sectionalareathatminimizesthetotalpotentialenergystoredinanequilibriumstateisfound.Thecompanionproblemofthedesignthatstoresthemaximumpotentialenergyunderthesameconstraintconditionsisalsosolved.InVentura15,theproblemofboundaryconditionsenforcementinmeshlessmethodsissolved.InVentura15,themovingleast-squaresapproximationisintroducedinthetotalpotentialenergyfunctionalfortheelasticsolidproblemandanaugmentedLagrangiantermisaddedtosatisfyessentialboundaryconditions.Theprincipleofminimizationoftotalpotentialenergyisinadditionatthebaseofthegeneralfiniteelementsformulation,withanaimoffindingtheunknownoptimalnodalfactors16.2ThemethodsusedInthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedherelikelimitationsoroptimizationconstraints.Forexample,onemayhavelimitationsontheweight,ortonotexceedthevalueofastress.Theideawhichwillbedevelopedinthispaperisthusverysimple.Amechanicalstructureisdescribedbytwotypesofparameters:variablesknownasdiscretizationvariables(forexample,degreesoffreedomindisplacementforfiniteelementsmethod),andgeometricalvariablesofdesign(forexampleparameterswhichmakeitpossibletodescribethemechanicalstructureshape).Totalpotentialenergydependsonanimplicitorexplicitwayofdetermin-ingdiscretizationanddesignvariablesatthesametime.Onethuswillcarryoutadoubleoptimizationofthemechanicalstructure,comparedtothediscretizationanddesignvariables;theobjectivebeingtominimizetotalpotentialenergyoverall.Clearly,theproblemofoptimiza-tionofamechanicalstructurewillbeaddressedbythefollowingapproach:Objective:tominimizetotalpotentialenergyVariablesofoptimization:concurrentlydeterminingdiscretizationvariables(inthecaseofatraditionaluseofthefiniteelementmethodinmechanicsofstruc-tures),anddesignvariablesdescribingtheshapeofthestructureOptimizationlimitations:WeightorvolumeDisplacementsorstrainsStressesFrequenciesTheproblemofoptimizationofamechanicalstructurewillbesolvedinthefollowingway,whilereiteratingon2IntJAdvManufTechnol(2008)38:16thesestages,ifneeded(accordingtothenatureoftheproblem):Stage1Minimizationofthetotalpotentialenergyofthemechanicalstructurecomparedtotheonlydis-cretizationvariablesofthestructure(degreesoffreedominfiniteelements).Itactshereasanoptimizationwithoutoptimizationlimitations.Theonlylimitationsatthisstageareofpurelymechanicalorigin,andrelatetotheboundaryconditionsandtotheexternaleffortsappliedtothestructure.Inthisstage1,thedesignvariablesremainfixed,andoneobtainstheimplicitorexplicitexpressionsofthedegreesoffreedomaccordingtothedesignvariables(whichcanbethevariableswhichmakeitpossibletodescribetheshape,inthecaseofashapeoptimization,forexample).Onewillseeintheexamplesofthefollowingpartthattheseexpressionscanbeexplicitorimplicitandwhichisthesuitabletreatmentfollowingthecases.Inthecaseofafiniteelementsmethodofcalculation,thisstage1isthebasisoffiniteelementscalculationtoobtainthedegreesoffreedomofthemechanicalstructure.Indeed,infiniteelements,displacementswiththenodesofthemechanicalstructuremeshareobtainedbyminimizationoftotalpotentialenergy16.Stage2Theexpressionsofthedegreesoffreedomofthemechanicalstructureaccordingtothedesignvariablesobtainedpreviouslyaretheninjectedintothetotalpotentialenergyofthemechanicalstructure(onewillseeinthesecondexampleofthefollowingparthowonetreatsthecasewherethedegreesoffreedomareimplicitfunctionsofthedesignvariables).Onethenobtainsanexpressionofthetotalpotentialenergywhichdependsonlyonthedesignvariables(inexplicitorimplicitform).Stage3Onethencarriesoutasecondandnewminimi-zationofthetotalpotentialenergyobtainedintheprecedingform,butthistimecomparedtothedesignvariableswhilerespectingthetechnolog-icallimitationsortheoptimizationconstraintsoftheproblem.Thismethodcanbeappliedwithmoreorlessfacilityaccordingtothenatureoftheproblem.Itisclear,forexample,thatifthediscretizationvariablescanbeexpressedinanexplicitwayaccordingtothedesignvariables,thesettinginofstages2to3isimmediate,andwithoutiterations.Ifthediscretizationvariablescannotbeexpressedinanexplicitwayaccordingtothedesignvariables,orifthetopologyofthestructureisnotfixed,orifthebehaviorisnotlinear,itwillbenecessarytoproceedbysuccessiveiterationsonstages1to3.Itisthecaseoftheexamplespresentedinthefollowingpart,andonewillseeonthisoccasionwhichtypeofstrategyonecanadoptfortheseiterations.Tosummarize,inthepseudo-constructalstep,themainobjectiveisonlytheminimizationoftotalpotentialenergy,theotherpossibleobjectivesaretreatedlikelimitationsoroptimizationconstraints.TheoptimizationmethodusedforourexamplesisGA(geneticalgorithm),asdescribedin17.Exampleswithsimilarinstructionalvaluecanalsobefoundinmanybooks,e.g.in18.Thisevolutionarymethodisveryconvenientforourpseudo-constructalmethod.TheauthorhasworkedextensivelyinGAsandpublishedinsomereputedjournalsonthistopic1931.AsthetopicofGAsisstillrelativelynewinthestructuralmechanicscommu-nity,weprovideheresomedetailsofexactlywhatisusedinthisGA.Amultiplepointcrossoverisusedratherthanasinglepointcrossover.Theselectionschemeusedateachgenerationisentirelystochastic.Forourexamples,thenumberofgenerationsisequaltothatusedforconver-gence.TheresultsprovidedforourexampleswereconsistentlyreproducedbyusingdifferentseedsintheGA.Ithasbeenprovedthataratherstandardgeneticalgorithmissufficientforourexamples.3ExamplesEventhoughpotentialenergymaybeagoodmeasureforsomeoptimizations,potentialenergyisnotwhatgivestheshapetoawaterdroplet,nordefinestheoptimalshapeforahammer,whichiswhypotentialenergyisnottheonlyobjective;buttheoptimizationproblemisamultiobjectiveoneandtheobjectivefunctionsforthetwoexamplesarethenclearlyformulated.3.1Example1:optimizationoftheshapeofadropofwaterThefirsttestexampleistheoptimizationoftheshapeofadropofwater(Fig.1).Thisproblemisequivalenttoanequalresistancetankcalculatedbythemembranetheory.Theobjectiveistoseeifthepseudo-constructaltheorygivesthenaturesoptimumdesign.3.1.1ThemethodsusedThegeometryofthedropofwaterisdefinedbythegeneratinglineofathinaxisymmetricshell.Thislineisdescribedbysuccessivestraightorcircularsegmentsdescribedinagivensenseanddefinedbyinputdataofmasterpointcoordinatesandradiusvalues.Theinitialdataareasetofnodalpointsconnectedbystraightsegments.EachnodalpointisidentifiedbyitstwocylindricalIntJAdvManufTechnol(2008)38:163coordinates(r,z),andarealRwhichrepresentstheradiusofthecircletangenttothetwostraightsegmentsintersect-ingatthepoint.Theothercomputercalculationsgivethecoordinatesofanyboundarypointandespeciallythetangentpointsnecessarytodefinethecirculararclengths.ThedesignofthedropofwaterisdescribedbythreearcsofcirclesasindicatedinFig.1.Analysisisperformedbythefiniteelementmethodwiththree-nodeparabolicelementsusingtheclassicalLove-Kirchoffshelltheory.Anautomaticmeshgeneratorcreatesthefiniteelementmeshofeachstraightorcircularsegmentconsideredasamacrofiniteelement.Theobjectiveistoobtainashapeforthedropofwatergivingrisetoaminimumtotalpotentialenergy(whichisthemainobjective)andanequalresistancetank(whichistheonlyconstraintorlimitationoftheproblem).Infact,forthedropofwaterproblem,thegoalisamulti-objectiveone,thetwoobjectives(f1=minimumtotalpotentialenergyandf2=equalresistance)arecombinedinamulti-objective:f=f1+f2.TheconstraintorlimitationoftheproblemistakenintoaccountbyapenalizationofthetotalpotentialenergyasindicatedinMarcelinetal.TheresultsThedesignofthedropofwaterisdescribedbythreearcsofacircle(Fig.1).Th

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论