外文翻译--自适应电动温度调节系统注射成型的模具  英文版.pdf_第1页
外文翻译--自适应电动温度调节系统注射成型的模具  英文版.pdf_第2页
外文翻译--自适应电动温度调节系统注射成型的模具  英文版.pdf_第3页
外文翻译--自适应电动温度调节系统注射成型的模具  英文版.pdf_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

JournalofMaterialsProcessingTechnology187188(2007)690693AdaptivesystemforelectricallydriventhermoregulationofmouldsforinjectionmouldingB.Nardina,B.Zagara,A.Glojeka,D.KriajbzaTECOS,ToolandDieDevelopmentCentreofSlovenia,KidrievaCesta25,3000Celje,SloveniacbFacultyofElectricalEngineering,Ljubljana,SloveniaAbstractOneofthebasicproblemsinthedevelopmentandproductionprocessofmouldsforinjectionmouldingisthecontroloftemperaturecon-ditionsinthemould.Precisestudyofthermodynamicprocessesinmouldsshowed,thatheatexchangecanbemanipulatedbythermoelectricalmeans.Suchsystemupgradesconventionalcoolingsystemswithinthemouldorcanbeastandaloneapplicationforheatmanipulationwithinit.Inthepaper,theauthorswillpresentresultsoftheresearchproject,whichwascarriedoutinthreephasesanditsresultsarepatentedinA6862006patent.Thetestingstage,theprototypestageandtheindustrializationphasewillbepresented.Themainresultsoftheprojectweretotalandrapidon-linethermoregulationofthemouldoverthecycletimeandoverallinuenceonqualityofplasticproductwithemphasisondeformationcontrol.Presentedapplicationcanpresentamilestoneintheeldofmouldtemperatureandproductqualitycontrolduringtheinjectionmouldingprocess.2006ElsevierB.V.Allrightsreserved.Keywords:Injectionmoulding;Mouldcooling;Thermoelectricmodules;FEMsimulations1.Introduction,denitionofproblemDevelopmentoftechnologyofcoolingmouldsviathermo-electrical(TEM)meansderivesoutoftheindustrialpraxisandproblems,i.e.atdesign,toolmakingandexploitationoftools.Currentcoolingtechnologieshavetechnologicallimitations.Theirlimitationscanbelocatedandpredictedinadvancewithniteelementanalyses(FEA)simulationpackagesbutnotcom-pletelyavoided.Resultsofadiversestateoftheartanalysesrevealedthatallexistingcoolingsystemsdonotprovidecon-trollableheattransfercapabilitiesadequatetotintodemand-ingtechnologicalwindowsofcurrentpolymerprocessingtechnologies.Polymerprocessingisnowadayslimited(intermofshort-eningtheproductioncycletimeandwithinthatreducingcosts)onlywithheatcapacitymanipulationcapabilities.Otherproduc-tionoptimizationcapabilitiesarealreadydriventomechanicalandpolymerprocessinglimitations3.1.1.ThermalprocessesininjectionmouldingplasticprocessingPlasticprocessingisbasedonheattransferbetweenplasticmaterialandmouldcavity.Withincalculationofheattransferoneshouldconsidertwomajorfacts:rstisallusedenergywhichisbasedonrstlawofthermodynamicslawofenergyconservation1,secondisvelocityofheattransfer.Basictaskatheattransferanalysesistemperaturecalculationovertimeanditsdistributioninsidestudiedsystem.Thatlastdependsonvelocityofheattransferbetweenthesystemandsurroundingsandvelocityofheattransferinsidethesystem.Heattransfercanbebasedasheatconduction,convectionandradiation1.1.2.CoolingtimeCompleteinjectionmouldingprocesscyclecomprisesofmouldclosingphase,injectionofmeltintocavity,packingpres-surephaseforcompensatingshrinkageeffect,coolingphase,mouldopeningphaseandpartejectionphase.Inmostcases,thelongesttimeofallphasesdescribedaboveiscoolingtime.Coolingtimeininjectionmouldingprocessisdenedastimeneededtocooldowntheplasticpartdowntoejectiontemperature1.Correspondingauthors.Tel.:+3863490920;fax:+38634264612.E-mailaddress:Blaz.Nardintecos.si(B.Nardin).0924-0136/$seefrontmatter2006ElsevierB.V.Allrightsreserved.doi:10.1016/j.jmatprotec.2006.11.052B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693691Fig.1.Mouldtemperaturevariationacrossonecycle2.Fig.2.TEMblockdiagram.Themainaimofacoolingprocessistoloweradditionalcoolingtimewhichistheoreticallyneedless;inpraxis,itextendsfrom45upto67%ofthewholecycletime1,4.Fromliteratureandexperiments1,4,itcanbeseen,thatthemouldtemperaturehasenormousinuenceontheejectiontimeandthereforethecoolingtime(costs).InjectionmouldingprocessisacyclicprocesswheremouldtemperaturevariesasshowninFig.1wheretemperaturevariesfromaveragevaluethroughwholecycletime.2.CoolingtechnologyforplasticinjectionmouldsAsitwasalreadydescribed,therearealreadyseveraldiffer-enttechnologies,enablingtheuserstocoolthemoulds5.Themostconventionalisthemethodwiththedrillingtechnology,ducingholesinthemould.Throughtheseholes(coolinglines),thecoolingmediaisowing,removingthegeneratedandaccumulatedheatfromthemould1,2.Itisalsoveryconvenienttobuildindifferentmaterials,withdifferentthermalconductiv-itywiththeaimtoenhancecontrolovertemperatureconditionsinthemould.Suchapproachesaresocalledpassiveapproachestowardsthemouldtemperaturecontrol.Thechallengingtaskistomakeanactivesystem,whichcanalterthethermalconditions,regardingtothedesiredaspects,likeproductqualityorcyclestime.Oneofsuchapproachesisintegratingthermalelectricalmodules(TEM),whichcanalterthethermalconditionsinthemould,regardingthedesiredprop-erties.Withsuchapproach,theonecancontroltheheattransferwiththetimeandspacevariable,whatmeans,thatthetemper-aturecanberegulatedthroughouttheinjectionmouldingcycle,independentofthepositioninthemould.Theheatcontrolisdonebythecontrolunit,wheretheinputvariablesarereceivedfromthemanualinputortheinputfromtheinjectionmouldingsimulation.Withtheoutputvalues,thecontrolunitmonitorstheTEMmodulebehaviour.2.1.Thermoelectricodules(TEM)Fortheneedsofthethermalmanipulation,theTEMmodulewasintegratedintomould.Interactionbetweentheheatandelec-tricalvariablesforheatexchangeisbasedonthePeltiereffect.ThephenomenonofPeltiereffectiswellknown,butitwasuntilnowneverusedintheinjectionmouldingapplications.TEMmodule(seeFig.2)isadevicecomposedofproperlyarrangedpairsofPandNtypesemiconductorsthatarepositionedbetweentwoceramicplatesformingthehotandthecoldthermoelectriccoolersites.Powerofaheattransfercanbeeasilycontrolledthroughthemagnitudeandthepolarityofthesuppliedelectriccurrent.2.2.ApplicationformouldcoolingThemainideaoftheapplicationisinsertingTEMmoduleintowallsofthemouldcavityservingasaprimaryheattransferunit.SuchbasicassemblycanbeseeninFig.3.Secondaryheattransferisrealizedviaconventionaluidcoolingsystemthatallowsheatowsinandoutfrommouldcavitythermodynamicsystem.DevicepresentedinFig.3comprisesofthermoelectricmodules(A)thatenableprimarilyheattransferfromortotem-peraturecontrollablesurfaceofmouldcavity(B).Secondaryheattransferisenabledviacoolingchannels(C)thatdeliverconstanttemperatureconditionsinsidethemould.Thermoelec-tricmodules(A)operateasheatpumpandassuchmanipulatewithheatderivedtoorfromthemouldbyuidcoolingsys-tem(C).Systemforsecondaryheatmanipulationwithcoolingchannelsworkasheatexchanger.Toreduceheatcapacityofcontrollableareathermalinsulation(D)isinstalledbetweenthemouldcavity(F)andthemouldstructureplates(E).Fig.3.StructureofTEMcoolingassembly.692B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693Fig.4.Structurefortemperaturedetectionandregulation.ThewholeapplicationconsistsofTEMmodules,atemper-aturesensorandanelectronicunitthatcontrolsthecompletesystem.ThesystemisdescribedinFig.4andcomprisesofaninputunit(inputinterface)andasupplyunit(unitforelectronicandpowerelectronicsupplyHbridgeunit).Theinputandsupplyunitswiththetemperaturesensorloopinformationareattachedtoacontrolunitthatactsasanexe-cutionunittryingtoimposepredenedtemperate/time/positionrelations.UsingthePeltiereffect,theunitcanbeusedforheatingorcoolingpurposes.ThesecondaryheatremovalisrealizedviauidcoolingmediaseenasheatexchangerinFig.4.Thatunitisbasedoncurrentcoolingtechnologiesandservesasasinkorasourceofaheat.Thisenablescompletecontrolofprocessesintermsoftemperature,timeandpositionthroughthewholecycle.Furthermore,itallowsvarioustemperature/time/positionpro-leswithinthecyclealsoforstartingandendingprocedures.Describedtechnologycanbeusedforvariousindustrialandresearchpurposeswhereprecisetemperature/time/positioncon-trolisrequired.ThepresentedsystemsinFigs.3and4wereanalysedfromthetheoretical,aswellasthepracticalpointofview.ThetheoreticalaspectwasanalysedbytheFEMsimulations,whilethepracticalonebythedevelopmentandtheimplementationoftheprototypeintorealapplicationtesting.3.FEManalysisofmouldcoolingCurrentdevelopmentofdesigningmouldsforinjectionmouldingcomprisesofseveralphases3.Amongthemisalsodesignandoptimizationofacoolingsystem.Thisisnowa-daysperformedbysimulationsusingcustomizedFEMpackages(Moldow4)thatcanpredictcoolingsystemcapabilitiesandespeciallyitsinuenceonplastic.Withsuchsimulations,moulddesignersgatherinformationonproductrheologyanddeforma-tionduetoshrinkageasellasproductiontimecycleinformation.Thisthermalinformationisusuallyaccuratebutcanstillbeunreliableincasesofinsufcientrheologicalmaterialinforma-tion.ForthehighqualityinputforthethermalregulationofTEM,itisneededtogetapictureaboutthetemperaturedistri-butionduringthecycletimeandthroughoutthemouldsurfaceandthroughoutthemouldthickness.Therefore,differentprocesssimulationsareneeded.Fig.5.Cross-sectionofaprototypeinFEMenvironment.3.1.Physicalmodel,FEManalysisImplementationofFEManalysesintodevelopmentprojectwasdoneduetoauthorslongexperienceswithsuchpackages4andpossibilitytoperformdifferenttestinthevirtualenvi-ronment.WholeprototypecoolingsystemwasdesignedinFEMenvironment(seeFig.5)throughwhichtemperaturedistributionineachpartofprototypecoolingsystemandcontactsbetweenthemwereexplored.Forsimulatingphysicalpropertiesinsideadevelopedprototype,asimulationmodelwasconstructedusingCOMSOLMultiphysicssoftware.ResultwasaFEMmodelidenticaltorealprototype(seeFig.7)throughwhichitwaspossibletocompareandevaluateresults.FEMmodelwasexploredintermofheattransferphysicstakingintoaccounttwoheatsources:awaterexchangerwithuidphysicsandathermoelectricmodulewithheattransferphysics(onlyconductionandconvectionwasanalysed,radiationwasignoredduetolowrelativetemperatureandthereforelowimpactontemperature).BoundaryconditionsforFEManalysesweresetwiththegoaltoachieveidenticalworkingconditionsasinrealtest-ing.Surroundingairandthewaterexchangerweresetatstabletemperatureof20C.Fig.6.TemperaturedistributionaccordingtoFEManalysis.B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693693Fig.7.Prototypeinrealenvironment.ResultsoftheFEManalysiscanbeseeninFig.6,i.e.temper-aturedistributionthroughthesimulationareashowninFig.5.Fig.6representssteadystateanalysiswhichwasveryaccurateincomparisontoprototypetests.Inordertosimulatethetimeresponsealsothetransientsimulationwasperformed,showingverypositiveresultsforfuturework.Itwaspossibletoachieveatemperaturedifferenceof200Cinashortperiodoftime(5s),whatcouldcauseseveralproblemsintheTEMstructure.Thoseproblemsweresolvedbyseveralsolutions,suchasadequatemounting,choosingappropriateTEMmaterialandapplyingintelligentelectronicregulation.3.2.LaboratorytestngAsitwasalreadydescribed,theprototypewasproducedandtested(seeFig.7).Theresultsareshowing,thatthesetassump-tionswereconrmed.WiththeTEMmoduleitispossibletocontrolthetemperaturedistributionondifferentpartsofthemouldthroughoutthecycletime.Withthelaboratorytests,itwasproven,thattheheatmanipulationcanbepracticallyregu-latedwithTEMmodules.Thetestweremadeinthelaboratory,simulatingtherealindustrialenvironment,withtheinjectionmouldingmachineKraussMaffeiKM60C,temperaturesen-sors,infraredcamerasandtheprototypeTEMmodules.Thetemperatureresponsein1.8svariedform+5upto80C,whatrepresentsawideareafortheheatcontrolwithintheinjectionmouldingcycle.4.ConclusionsUseofthermoelectricmodulewithitsstraightforwardcon-nectionbetweentheinputandoutputrelationsrepresentsamilestoneincoolingapplications.Itsintroductionintomouldsforinjectionmouldingwithitsproblematiccoolingconstructionandproblematicprocessingofpreciseandhighqualityplasticpartsrepresentshighexpectations.TheauthorswereassumingthattheuseofthePeltiereffectcanbeusedforthetemperaturecontrolinmouldsforinjectionmoulding.Withtheapproachbasedonthesimulationworkandtherealproductionoflaboratoryequipmentproved,theassump-tionswereconrmed.SimulationresultsshowedawideareaofpossibleapplicationofTEMmoduleintheinjectionmouldingprocess.Withmentionedfunctionalityofatemperatureproleacrosscycletime,injectionmouldingprocesscanbefullycontrolled.Industrialproblems,suchasuniformcoolingofproblematicAclasssurfacesanditsconsequenceofplasticpartappear-ancecanbesolved.Problemsofllingthinlongwallscanbesolvedwithoverheatingsomesurfacesatinjectiontime.Further-more,withsuchapplicationcontroloverrheologicalpropertiesofplasticmaterialscanbegained.WiththeproperthermalregulationofTEMitwaspos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论