



全文预览已结束
付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JournalofMaterialsProcessingTechnology187188(2007)690693AdaptivesystemforelectricallydriventhermoregulationofmouldsforinjectionmouldingB.Nardina,B.Zagara,A.Glojeka,D.KriajbzaTECOS,ToolandDieDevelopmentCentreofSlovenia,KidrievaCesta25,3000Celje,SloveniacbFacultyofElectricalEngineering,Ljubljana,SloveniaAbstractOneofthebasicproblemsinthedevelopmentandproductionprocessofmouldsforinjectionmouldingisthecontroloftemperaturecon-ditionsinthemould.Precisestudyofthermodynamicprocessesinmouldsshowed,thatheatexchangecanbemanipulatedbythermoelectricalmeans.Suchsystemupgradesconventionalcoolingsystemswithinthemouldorcanbeastandaloneapplicationforheatmanipulationwithinit.Inthepaper,theauthorswillpresentresultsoftheresearchproject,whichwascarriedoutinthreephasesanditsresultsarepatentedinA6862006patent.Thetestingstage,theprototypestageandtheindustrializationphasewillbepresented.Themainresultsoftheprojectweretotalandrapidon-linethermoregulationofthemouldoverthecycletimeandoverallinuenceonqualityofplasticproductwithemphasisondeformationcontrol.Presentedapplicationcanpresentamilestoneintheeldofmouldtemperatureandproductqualitycontrolduringtheinjectionmouldingprocess.2006ElsevierB.V.Allrightsreserved.Keywords:Injectionmoulding;Mouldcooling;Thermoelectricmodules;FEMsimulations1.Introduction,denitionofproblemDevelopmentoftechnologyofcoolingmouldsviathermo-electrical(TEM)meansderivesoutoftheindustrialpraxisandproblems,i.e.atdesign,toolmakingandexploitationoftools.Currentcoolingtechnologieshavetechnologicallimitations.Theirlimitationscanbelocatedandpredictedinadvancewithniteelementanalyses(FEA)simulationpackagesbutnotcom-pletelyavoided.Resultsofadiversestateoftheartanalysesrevealedthatallexistingcoolingsystemsdonotprovidecon-trollableheattransfercapabilitiesadequatetotintodemand-ingtechnologicalwindowsofcurrentpolymerprocessingtechnologies.Polymerprocessingisnowadayslimited(intermofshort-eningtheproductioncycletimeandwithinthatreducingcosts)onlywithheatcapacitymanipulationcapabilities.Otherproduc-tionoptimizationcapabilitiesarealreadydriventomechanicalandpolymerprocessinglimitations3.1.1.ThermalprocessesininjectionmouldingplasticprocessingPlasticprocessingisbasedonheattransferbetweenplasticmaterialandmouldcavity.Withincalculationofheattransferoneshouldconsidertwomajorfacts:rstisallusedenergywhichisbasedonrstlawofthermodynamicslawofenergyconservation1,secondisvelocityofheattransfer.Basictaskatheattransferanalysesistemperaturecalculationovertimeanditsdistributioninsidestudiedsystem.Thatlastdependsonvelocityofheattransferbetweenthesystemandsurroundingsandvelocityofheattransferinsidethesystem.Heattransfercanbebasedasheatconduction,convectionandradiation1.1.2.CoolingtimeCompleteinjectionmouldingprocesscyclecomprisesofmouldclosingphase,injectionofmeltintocavity,packingpres-surephaseforcompensatingshrinkageeffect,coolingphase,mouldopeningphaseandpartejectionphase.Inmostcases,thelongesttimeofallphasesdescribedaboveiscoolingtime.Coolingtimeininjectionmouldingprocessisdenedastimeneededtocooldowntheplasticpartdowntoejectiontemperature1.Correspondingauthors.Tel.:+3863490920;fax:+38634264612.E-mailaddress:Blaz.Nardintecos.si(B.Nardin).0924-0136/$seefrontmatter2006ElsevierB.V.Allrightsreserved.doi:10.1016/j.jmatprotec.2006.11.052B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693691Fig.1.Mouldtemperaturevariationacrossonecycle2.Fig.2.TEMblockdiagram.Themainaimofacoolingprocessistoloweradditionalcoolingtimewhichistheoreticallyneedless;inpraxis,itextendsfrom45upto67%ofthewholecycletime1,4.Fromliteratureandexperiments1,4,itcanbeseen,thatthemouldtemperaturehasenormousinuenceontheejectiontimeandthereforethecoolingtime(costs).InjectionmouldingprocessisacyclicprocesswheremouldtemperaturevariesasshowninFig.1wheretemperaturevariesfromaveragevaluethroughwholecycletime.2.CoolingtechnologyforplasticinjectionmouldsAsitwasalreadydescribed,therearealreadyseveraldiffer-enttechnologies,enablingtheuserstocoolthemoulds5.Themostconventionalisthemethodwiththedrillingtechnology,ducingholesinthemould.Throughtheseholes(coolinglines),thecoolingmediaisowing,removingthegeneratedandaccumulatedheatfromthemould1,2.Itisalsoveryconvenienttobuildindifferentmaterials,withdifferentthermalconductiv-itywiththeaimtoenhancecontrolovertemperatureconditionsinthemould.Suchapproachesaresocalledpassiveapproachestowardsthemouldtemperaturecontrol.Thechallengingtaskistomakeanactivesystem,whichcanalterthethermalconditions,regardingtothedesiredaspects,likeproductqualityorcyclestime.Oneofsuchapproachesisintegratingthermalelectricalmodules(TEM),whichcanalterthethermalconditionsinthemould,regardingthedesiredprop-erties.Withsuchapproach,theonecancontroltheheattransferwiththetimeandspacevariable,whatmeans,thatthetemper-aturecanberegulatedthroughouttheinjectionmouldingcycle,independentofthepositioninthemould.Theheatcontrolisdonebythecontrolunit,wheretheinputvariablesarereceivedfromthemanualinputortheinputfromtheinjectionmouldingsimulation.Withtheoutputvalues,thecontrolunitmonitorstheTEMmodulebehaviour.2.1.Thermoelectricodules(TEM)Fortheneedsofthethermalmanipulation,theTEMmodulewasintegratedintomould.Interactionbetweentheheatandelec-tricalvariablesforheatexchangeisbasedonthePeltiereffect.ThephenomenonofPeltiereffectiswellknown,butitwasuntilnowneverusedintheinjectionmouldingapplications.TEMmodule(seeFig.2)isadevicecomposedofproperlyarrangedpairsofPandNtypesemiconductorsthatarepositionedbetweentwoceramicplatesformingthehotandthecoldthermoelectriccoolersites.Powerofaheattransfercanbeeasilycontrolledthroughthemagnitudeandthepolarityofthesuppliedelectriccurrent.2.2.ApplicationformouldcoolingThemainideaoftheapplicationisinsertingTEMmoduleintowallsofthemouldcavityservingasaprimaryheattransferunit.SuchbasicassemblycanbeseeninFig.3.Secondaryheattransferisrealizedviaconventionaluidcoolingsystemthatallowsheatowsinandoutfrommouldcavitythermodynamicsystem.DevicepresentedinFig.3comprisesofthermoelectricmodules(A)thatenableprimarilyheattransferfromortotem-peraturecontrollablesurfaceofmouldcavity(B).Secondaryheattransferisenabledviacoolingchannels(C)thatdeliverconstanttemperatureconditionsinsidethemould.Thermoelec-tricmodules(A)operateasheatpumpandassuchmanipulatewithheatderivedtoorfromthemouldbyuidcoolingsys-tem(C).Systemforsecondaryheatmanipulationwithcoolingchannelsworkasheatexchanger.Toreduceheatcapacityofcontrollableareathermalinsulation(D)isinstalledbetweenthemouldcavity(F)andthemouldstructureplates(E).Fig.3.StructureofTEMcoolingassembly.692B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693Fig.4.Structurefortemperaturedetectionandregulation.ThewholeapplicationconsistsofTEMmodules,atemper-aturesensorandanelectronicunitthatcontrolsthecompletesystem.ThesystemisdescribedinFig.4andcomprisesofaninputunit(inputinterface)andasupplyunit(unitforelectronicandpowerelectronicsupplyHbridgeunit).Theinputandsupplyunitswiththetemperaturesensorloopinformationareattachedtoacontrolunitthatactsasanexe-cutionunittryingtoimposepredenedtemperate/time/positionrelations.UsingthePeltiereffect,theunitcanbeusedforheatingorcoolingpurposes.ThesecondaryheatremovalisrealizedviauidcoolingmediaseenasheatexchangerinFig.4.Thatunitisbasedoncurrentcoolingtechnologiesandservesasasinkorasourceofaheat.Thisenablescompletecontrolofprocessesintermsoftemperature,timeandpositionthroughthewholecycle.Furthermore,itallowsvarioustemperature/time/positionpro-leswithinthecyclealsoforstartingandendingprocedures.Describedtechnologycanbeusedforvariousindustrialandresearchpurposeswhereprecisetemperature/time/positioncon-trolisrequired.ThepresentedsystemsinFigs.3and4wereanalysedfromthetheoretical,aswellasthepracticalpointofview.ThetheoreticalaspectwasanalysedbytheFEMsimulations,whilethepracticalonebythedevelopmentandtheimplementationoftheprototypeintorealapplicationtesting.3.FEManalysisofmouldcoolingCurrentdevelopmentofdesigningmouldsforinjectionmouldingcomprisesofseveralphases3.Amongthemisalsodesignandoptimizationofacoolingsystem.Thisisnowa-daysperformedbysimulationsusingcustomizedFEMpackages(Moldow4)thatcanpredictcoolingsystemcapabilitiesandespeciallyitsinuenceonplastic.Withsuchsimulations,moulddesignersgatherinformationonproductrheologyanddeforma-tionduetoshrinkageasellasproductiontimecycleinformation.Thisthermalinformationisusuallyaccuratebutcanstillbeunreliableincasesofinsufcientrheologicalmaterialinforma-tion.ForthehighqualityinputforthethermalregulationofTEM,itisneededtogetapictureaboutthetemperaturedistri-butionduringthecycletimeandthroughoutthemouldsurfaceandthroughoutthemouldthickness.Therefore,differentprocesssimulationsareneeded.Fig.5.Cross-sectionofaprototypeinFEMenvironment.3.1.Physicalmodel,FEManalysisImplementationofFEManalysesintodevelopmentprojectwasdoneduetoauthorslongexperienceswithsuchpackages4andpossibilitytoperformdifferenttestinthevirtualenvi-ronment.WholeprototypecoolingsystemwasdesignedinFEMenvironment(seeFig.5)throughwhichtemperaturedistributionineachpartofprototypecoolingsystemandcontactsbetweenthemwereexplored.Forsimulatingphysicalpropertiesinsideadevelopedprototype,asimulationmodelwasconstructedusingCOMSOLMultiphysicssoftware.ResultwasaFEMmodelidenticaltorealprototype(seeFig.7)throughwhichitwaspossibletocompareandevaluateresults.FEMmodelwasexploredintermofheattransferphysicstakingintoaccounttwoheatsources:awaterexchangerwithuidphysicsandathermoelectricmodulewithheattransferphysics(onlyconductionandconvectionwasanalysed,radiationwasignoredduetolowrelativetemperatureandthereforelowimpactontemperature).BoundaryconditionsforFEManalysesweresetwiththegoaltoachieveidenticalworkingconditionsasinrealtest-ing.Surroundingairandthewaterexchangerweresetatstabletemperatureof20C.Fig.6.TemperaturedistributionaccordingtoFEManalysis.B.Nardinetal./JournalofMaterialsProcessingTechnology187188(2007)690693693Fig.7.Prototypeinrealenvironment.ResultsoftheFEManalysiscanbeseeninFig.6,i.e.temper-aturedistributionthroughthesimulationareashowninFig.5.Fig.6representssteadystateanalysiswhichwasveryaccurateincomparisontoprototypetests.Inordertosimulatethetimeresponsealsothetransientsimulationwasperformed,showingverypositiveresultsforfuturework.Itwaspossibletoachieveatemperaturedifferenceof200Cinashortperiodoftime(5s),whatcouldcauseseveralproblemsintheTEMstructure.Thoseproblemsweresolvedbyseveralsolutions,suchasadequatemounting,choosingappropriateTEMmaterialandapplyingintelligentelectronicregulation.3.2.LaboratorytestngAsitwasalreadydescribed,theprototypewasproducedandtested(seeFig.7).Theresultsareshowing,thatthesetassump-tionswereconrmed.WiththeTEMmoduleitispossibletocontrolthetemperaturedistributionondifferentpartsofthemouldthroughoutthecycletime.Withthelaboratorytests,itwasproven,thattheheatmanipulationcanbepracticallyregu-latedwithTEMmodules.Thetestweremadeinthelaboratory,simulatingtherealindustrialenvironment,withtheinjectionmouldingmachineKraussMaffeiKM60C,temperaturesen-sors,infraredcamerasandtheprototypeTEMmodules.Thetemperatureresponsein1.8svariedform+5upto80C,whatrepresentsawideareafortheheatcontrolwithintheinjectionmouldingcycle.4.ConclusionsUseofthermoelectricmodulewithitsstraightforwardcon-nectionbetweentheinputandoutputrelationsrepresentsamilestoneincoolingapplications.Itsintroductionintomouldsforinjectionmouldingwithitsproblematiccoolingconstructionandproblematicprocessingofpreciseandhighqualityplasticpartsrepresentshighexpectations.TheauthorswereassumingthattheuseofthePeltiereffectcanbeusedforthetemperaturecontrolinmouldsforinjectionmoulding.Withtheapproachbasedonthesimulationworkandtherealproductionoflaboratoryequipmentproved,theassump-tionswereconrmed.SimulationresultsshowedawideareaofpossibleapplicationofTEMmoduleintheinjectionmouldingprocess.Withmentionedfunctionalityofatemperatureproleacrosscycletime,injectionmouldingprocesscanbefullycontrolled.Industrialproblems,suchasuniformcoolingofproblematicAclasssurfacesanditsconsequenceofplasticpartappear-ancecanbesolved.Problemsofllingthinlongwallscanbesolvedwithoverheatingsomesurfacesatinjectiontime.Further-more,withsuchapplicationcontroloverrheologicalpropertiesofplasticmaterialscanbegained.WiththeproperthermalregulationofTEMitwaspos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共设施维护采购招标评审标准考核试卷
- 水产养殖土壤环境风险评估模型构建考核试卷
- 网络影视内容与社交媒体互动效应研究考核试卷
- 升降机安全监控数据挖掘与多变量统计分析方法研究考核试卷
- 老年人营养摄入与饮食平衡指导考核试卷
- 企业环保信息公开与透明度研究考核试卷
- 会员代表发言稿13篇
- 基建维修和设备采购管理暂行规定
- 假面舞会活动总结
- 个人工作态度检讨书
- 中药学多选题含答案
- 湖北省荆州市商投资区国有企业招聘考试《综合基础知识》国考真题
- 起重作业吊索具使用安全培训课件
- midas系列培训之桥梁检测专题
- 易制毒企业岗位职责(共19篇)
- 中小学生防溺水安全教育PPT课件【爱生命防溺水】
- 矿山开采承包合同参考
- GA∕T 743-2016 闪光警告信号灯
- 《体操—队形队列》单元教学计划和教案
- 绍兴市基准地价
- 统计学原理贾俊平期末考试重点
评论
0/150
提交评论