




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
VisualFeedbackControlofaMicroLatheHirotakaOJIMA1,KatsuhiroSAITO1,LiboZHOU1,JunSHIMIZU1,HiroshiEDA11IbarakiUniversityKeywords:Microlath,Visualfeedback,PositioncontrolAbstractMicromachiningprogressesrapidlyinrecentyears.Inthisresearch,amicrolathewhichisinstallableandoperationalinsideSEMvacuumchamberhasbeendesignedanddeveloped.Asafirststep,visuallyguidedmicrolathesystemisdevelopedwithimageofCCDcameradeviceinsteadofSEMimage.UnliketheconventionalfeedbackcontrolwhichpositionstheX-Ytableonly,thisschemeoffersadirectcontroloftheposition,pathandspeedofthetooltip.Usingproposedmethod,cuttingexperimentwasachieved,anditisconfirmedthatdevelopedmicrolathesystemiseffectivetodocutting.1IntroductionRecently,thesystemcapableofproducingthemicropartsarerequestedalongwiththeminiaturization1.Micromachiningprogressesrapidlyinrecentyears.Theexploratoryresearchhasapproachedtoalevelofaccessingasinglemoleculeoratom.Asadrivingforce,MEMS(microelectronic-mechanicalsystem)hasbeenplayingamajorroleinmakingmicrocomponentsanddevices.However,MEMSisbasedonthephotolithographytechnologyandtherebyapplicableintolimitedmaterialssuchassiliconmonocrystalline.Inordertomeetthedemandsofminiaturizationinelectronicandopticalapplications,alternativemicromachiningtechnologywhichisabletoaccessavarietyofmaterialsina3dimensionalwayisrequired2.Micro-MesoMechanicalManufacturing(M4)offersaccessibilitytodifferentkindsofmaterialaccordingtoeachobjective,andattainshighrepeatabilityandaccuracywiththelatestultraprecisionmeans.Thereare,however,manyscientificandtechnologicalbarriersencounteredinpragmaticimplementationofM4.Oneofthemisthesurfacechemistryeffects.Whenmachiningpartsareatmicroscale,itisrecognizedthatthesurface-area-to-volumeratiowillbeincreasedinbothchipsandtheresultingpartascomparedtoconventional(macro)machiningprocess.Anotherproblemisthedirectmotionandpositioncontrol.Sensorsthatarecapableofdirectlymeasuringtherelativedisplacementbetweenthetoolandworkpiecearenotyetavailable.Inthisresearch,amicrolathewhichisinstallableandoperationalinsideSEMvacuumchamberhasbeendesignedanddeveloped3.Fig.1showstheconceptsofthedevelopedmicrolathe.Atsuchoxygen-freecondition,cuttingtestsareconductedtounderstandsurfacechemistryeffectsonmicromachining.However,sincedevelopedmicrolatheissmallinsize,rigidityofthelatheislow.ThusthepositionofthetoolofthelatheisnotabletobecontrolledaccuratelywithaconventionalmethodwhichcontrolsX-Ytableonly.Therefore,thevisionguidedcontrolmethodisproposed.TheimagefromtheSEM(scanningelectronmicroscope)isdigitizedbyCCDintopixelswith8-bitgrayscale.Sinceeachpixelcontains2Dpositionalinformation,thevisionsystemthusoffersanorthogonalcoordinate(hereafterreferredasthepixelcoordinate)forobjectsinviewtoreferto.ThepixelcoordinateisfreefromthemechanicalinaccuracyandoffersadirectmeasurementofSEMCCDMicrolatheFig.1.Conceptofthedevelopedmicrolathe:H.Ojima,K.Saito,L.Zhou,J.Shimizu,H.Edatherelativepositionoftoolandworkpiece.TheresolutionincreasestogetherwiththemagnificationofthemicroscopeandthenumberofCCDpixels.Inthisresearch,avisioncontrolschemehasbeenproposedandimplementedforfeedbackcontrolofthetoolmovements.UnliketheconventionalfeedbackcontrolwhichpositionstheX-Ytableonly,thisschemeoffersadirectcontroloftheposition,pathandspeedofthetooltip.Asafirststep,visuallyguidedmicrolathesystemisdevelopedwithimageofCCDcameradeviceinsteadofSEMimage.2OverviewofsystemActuatingmoduleSensingmoduleProcessingmoduleImageinformationActuatorsignalCaptureboardMicrolatheXZstageAMPCPUDiamondtoolCCDWorkpieceD/AboardFig.2.BlockdiagramofsystemTable1.SpecificationofsystemSizeofmicrolathe(WDH)909042(mm)Spindlerotationalspeed0:*8000(rpm)DepthofcutTraversefeed1010(mm)Centerhighadjustment30(Pm)ToolDiamondNoseangle/noseradius40()/2(Pm)Scanningrate20(frame/s)Totalpixels0.3megapixelShowninFig.2istheblockdiagramofdevelopedmicrolathesystem,whichconsistsofthreemainmodules;theactuatingmodulethatdrivesmicrolathe,thesensingmodulethatimportsimagesandtheprocessingmodulethatimplementsfeedbackcontrol.Eachmoduleisresponsiblefordifferentfunction.Theactuatingmoduleisthecoreelementwherethecuttingoperationiscarriedout.ThesensingmoduleimportsimagesfromCCDimagedevice,andobtainsthepositionofthetoolandtheworkpiece.Theothertasksincludingtheimageprocessingandfeedbackcontrolareexecutedbytheprocessingmodule.UpperpictureofFig.1showstheoverallappearanceofthesystem.Table.1showsthespecificationsofthesystem.TheactuatingmodulefurtherincorporatesadiamondtoolwithaXZlinearstage,andthesensingmoduleincludesahighresolutionCCDimagedevice.Throughsensingmodule,theappearanceoftheworkingareaisnotonlydisplayedonthemonitortothegivetheoperatorthevisualinformation,butalsoconvertedintodigitalsignalforsubsequentprocessing.AsthecontroldiagramshowinFig.2,themovementsofthediamondtoolaregovernedwiththevisualfeedbackcontrol.Thesensingmodulefirstabstractsthepositionsofthetoolandworkpiecebycomparingthepre-registeredtemplateswiththecapturedvisualinformation.Correspondingtotherelativepositionsoftoolandworkpiece,thetoolpathandspeedarecalculatedandconvertedintoappropriatepulsetrain.egfhefghacbdabcdFig.4.DrivingprincipleofXZ-stageXYZCenterhighadjustmentDCmotorSpindleXZ-stageMicrolatheFig.3.XZ-stageandmicrolathe3ActuatingmoduleThedevelopedmicrolatheisshownrightwardinFig.3.ThislatheconsistsofthemainspindlewiththecolletchuckwiththeDCmotor,thecenterhighadjustmentusingapiezoelectricactuatorandXZ-stagewhichperformsbothdepthofcut(X-axis)andtraversefeed(Z-axis).TheXZ-stageisdrivenbytheinertialsliding,andiscomposedofapiezoelectricactuatorandthelinearguide.XZ-stageisshownleftwardinFig.3.AnaccuratetoolpositioningisachievedbydrivingtheXZ-stageprecisely.ImportantpointsofdrivingtheXZ-stagearethecontrolofthedrivingdirection,distanceandvelocity.Figure4showstheinertialslidingmechanismbythesaw-toothwave.Thedirectionofthemovementisdecidedbytherising/trailingedgeofthesaw-toothwaveasshowninFig.4.Forexample,:VisualFeedbackControlofaMicroLathethemechanismintherightdirection(+)isexplainedasfollows.Thevoltagegraduallyrises,andapiezoelectricactuatorstretchesmostin(1).Theactuatorshrinksbasedonthecentroidin(2)byfallingrapidlyofthevoltage.Onlythesidewherethefrictionalforceissmallmovesastheactuatorstretchesgraduallywiththeascentofthevoltagein(3).Theactuatorisstretchesagainin(4),andadvancestowardtherightdirection.Theactuatorsimilarlyadvancesalsotowardtheleftdirection(-)ifareversepulsetrainisgiven.00.40200400600FrequencyAHzSpeedAmm/s80V40VFig.5.VelocitychangedependingonfrequencyandvoltageNext,thevelocitycontrolofthismechanismisdescribed.AsshowninFig.5,thevelocityisproportionaltobothfrequencyofthepulsetrainanddrivingvoltage.Finally,drivingdistancecanbecontrolledaccordingtothenumberofpulses,becausethedrivingdistancebyoneplusisabout500Pmat80Vor250Pmat40V.(500,420)(140,420)(500,60)(140,60)XZ(320,240)4123Fig.8.ExperimentalconditionoflinearpathcontrolXpixelZpixelcount210121011000200300400countFig.7.RecognitionaccuracyoftooltipXZ-stageDiamondtoolCCDWorkpiece(X,Z)ZXFig.6.Visualsensingsystem4SensingmoduleThediamondtoolismountedonXZ-stage,whichusespiezoelectricactuatortodrivetool.Thosemechanicalinaccuracies,mainlycausedbythermalexpansion,hysteresis/driftinactuatorsandmisalignmentoforthogonalaxis,maydirectlydeliveranegativeeffecttothesystemperformance.Tosolvetheseproblems,avisioncontrolschemeasshowninFig.6isdeveloped.TheleftpictureinFig.6showsthemicrolatheandCCDimagedevicelocatedinY-axis.FromtherightpictureinFig.6,theincomingvisualinformationfromtheCCDisdigitizedintopixelswith8-bitgrayscalebythesensingmodule.Aseachpixelbears2Dpositionalinformation,thevisionsystemthusoffersanorthogonalcoordinate(referredasthepixelcoordinate)forobjectsinviewtoreferto.ThepixelcoordinateisfreefromthemechanicalinaccuracyanditsresolutionincreasestogetherwiththemagnificationoftheCCD.Ata480640pixelframeusedinthecurrentresearch,forexample,theresolutionofthepixelcoordinateisabout6PmwhentheviewoftheCCDistwofoldmagnified.WhentheCCDisalignedalongY-axis,thepositionofthetooltipandworkpieceisprojectedintoa2Dpixelcoordinate(XZ)whichiscommonlysharedbytheXZ-stageandworkpiece.Drivenandcontrolledbythepixelcoordinate,thetoolisabletobepositionedandmovedattheaccuracyofpixelresolutionwithnoeffectbythemechanicalinaccuracy.Inaddition,iftherigiditybetweenXZ-stageandtoolislow,positioningoftooltipisnotachievedbydrivingXZ-stageaccurately.Thus,moreimportantly,thisoperationisaneffectivemethodofpositioningforthemicrolathewithalowrigidity.Figure7showstherecognitionaccuracythatismadebyuseofshapebasedpatternmatching4torecognizetheactualtooltiprepeatedly500times.Wecomprehendfromthegraphthat88.5%reliabilitycanbeachievedwithinthelimesof1pixel(6Pm).5ProcessingmoduleForthesystemwhichisconsistedoftheactuatingandsensingmoduleinprevioussection3and4,thevisual:H.Ojima,K.Saito,L.Zhou,J.Shimizu,H.Edafeedbackcontrolmethodisdescribedinthissection.ThetooltipisdrivenbyvisualfeedbackcontrolmethodwithpositionsofthetooltipandtargetsfromCCDimagedevice.Asafirststep,weexaminedlinearpathcontrolandcircularpathcontrolofthetooltip.Inthesepathcontrols,drivingfrequencyis300Hz(162Pm/s).Atfirst,linerpathcontroloftooltipisdescribed.AsshowninFig.8,thetargetpositionisdefinedas(320,240)whichisthecenteroftheimagefromCCD,andfourkindsofpathcontrolareexamined.Inthecaseoflinerpathcontrol,theangleformedbythetargetpositionandthepresentpositionofthetooltipisfedbacktoachievethepathcontrol.Figure9(a)showstheresultantpathofthetooltipwithoutfeedbackcontrol,and(b)showsthatwithfeedbackcontrol.Inthecaseofthepathwithoutfeedback,finalerrorsoffourpathsarebetween5pixels(30Pm)and15pixels(90Pm).Ontheotherhand,thepathwithfeedbackfollowsalongthetargetpath,andfinalerroriswithin2pixels(12Pm).Next,thecircularpathcontrolwhichismulti-axialinterpolationisdescribed.TheconditionofthecircularpathcontrolisshowninFig.10.Thecenterofthetargetcircularpathisdefinedas(320,240)whichisthecenteroftheimagefromCCD,andtheradiusofthetargetpathis100pixels(600Pm),moreoverthetooltipisdrivenfromstartingpoint(220,240)alongcounterclockwisedirectionrepeated3times.Inthecaseofcircularpathcontrol,weconsidertofeedbacknotonlytheangleformedthecenterofthetargetcircularpathandthepresenttoolposition,butalsothedeviationoftheradiuswhichistheerrorbetweentheradiusofthetargetcircularpathandthedistancefromthecenterofthetargetpathtothepresenttoolposition.Inthecaseofthedrivingthepathwithoutfee
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国高压高强免烧压砖机市场分析及竞争策略研究报告
- 2025至2030年中国锦纶高速纺丝油剂市场分析及竞争策略研究报告
- 2025至2030年中国避雷器漏电流及动作记录器市场分析及竞争策略研究报告
- 2025至2030年中国补给水装置市场分析及竞争策略研究报告
- 2025至2030年中国聚酯纤维纸复合材料市场分析及竞争策略研究报告
- 2025至2030年中国立式瓷壳线绕电阻器市场分析及竞争策略研究报告
- 2025至2030年中国电脑天线市场分析及竞争策略研究报告
- 2025至2030年中国煤气管材市场分析及竞争策略研究报告
- 2025至2030年中国洁具挂件市场分析及竞争策略研究报告
- 2025至2030年中国梨形瓶市场分析及竞争策略研究报告
- Q∕SY 05010-2016 油气管道安全目视化管理规范
- 蓝海华腾变频器说明书
- 浆砌块石工程施工程序、施工方法
- 中国海洋大学论文封面模板
- 遵义会议-(演示)(课堂PPT)
- 订单(英文范本)PurchaseOrder
- 雨污水合槽沟槽回填施工专项方案(优.选)
- 预焊接工艺规程pWPS
- 史密特火焰复合机培训资料
- MSCCirc.913 适用于A类机器处所的固定式局部水基灭火系统认可导则(doc 8)
- MSDS-002环氧树脂安全技术说明书(MSDS)
评论
0/150
提交评论