磁阻效应-精品课件_第1页
磁阻效应-精品课件_第2页
磁阻效应-精品课件_第3页
磁阻效应-精品课件_第4页
磁阻效应-精品课件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、磁阻效应-课件第1页,共27页,2022年,5月20日,10点35分,星期五一、概 述(一)、磁阻概念:材料的电阻会因外加磁场而增加或减少,电阻的变化量称为磁阻(Magnetoresistan-ce)。物质在磁场中电阻率发生变化的现象称为磁阻效应。 磁阻效应是1857年由英国物理学家威廉汤姆森发现的。它在金属中可以忽略,在半导体中则可能由小到中等。从一般磁阻开始,磁阻发展经历了巨磁阻(GMR)、庞磁阻(CMR)、穿隧磁阻(TMR)、直冲磁阻(BMR)和异常磁阻(EMR)。第2页,共27页,2022年,5月20日,10点35分,星期五(二)、磁阻应用:目前,磁阻效应广泛用于磁传感、磁力计、电子罗

2、盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。磁阻器件的特点:灵敏度高、抗干扰能力强。在众多的磁阻器件中,锑化铟(InSb)传感器最为典型,它是一种价格低廉、灵敏度高的磁阻器件,在生产生活应用广泛。第3页,共27页,2022年,5月20日,10点35分,星期五(三)、磁阻分类:若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。一般情况下,纵向磁感强度不引起载流子偏移,因此一般不考虑纵向磁阻效应。 2007年诺贝尔物理学奖授予来自法国国家科学研究中心的物理学家艾尔伯费尔和来自德国尤利希研究中心的物理学家皮特克鲁伯格,以表彰

3、他们发现巨磁阻效应的贡献。第4页,共27页,2022年,5月20日,10点35分,星期五*巨磁阻效应(附加材料) 所谓巨磁阻效应,是指磁性材料的电阻率在有无外磁场作用时存在巨大变化的现象。巨磁阻是一种量子力学效应,它产生于层状的磁性薄膜结构。这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。上下两层为铁磁材料,中间夹层是非铁磁材料。 巨磁阻效应自从被发现以来就被用于开发研制硬磁盘的数据读出头(Read Head)。这使得存储单字节数据所需的磁性材料尺寸大为减小

4、,从而使得磁盘的存储能力得到大幅度的提高。第一个商业化数据读取探头是由IBM公司于1997年投放市场的,到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3播放器的标准技术。第5页,共27页,2022年,5月20日,10点35分,星期五二、实验目的1、了解磁阻效应的基本原理及测量磁阻效应的方法。2、测量锑化铟传感器的电阻与磁感应强度的关系。3、学习用磁阻传感器测量磁场的方法。第6页,共27页,2022年,5月20日,10点35分,星期五三、实验原理 如图1所示,当导电体处于磁场中时(电流方向与磁场方向垂直),导电体内的载流子将在洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍尔

5、电场。如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。如果将图1中UH短路,磁阻效应更明显。第7页,共27页,2022年,5月20日,10点35分,星期五电子受力分析:重力(竖直向下)、电场力1(外加电压产生)、电场力2(霍尔效应产生)、洛伦茨力(带电粒子在磁场中运动产生,左手法则)。左手法则:伸出左手,四指并拢,大拇指与四指指向垂直,让磁感应线穿过手心,四指指向电流方向

6、,大拇指所指方向为受力方向。 第8页,共27页,2022年,5月20日,10点35分,星期五 通常以电阻率的相对改变量来表示磁阻的大小,即用/(0)表示。其中(0)为零磁场时的电阻率, (B)为在磁场强度为B时的电阻率,则=(B) (0) 。由于磁阻传感器电阻的相对变化率R/R(0) 正比于/(0) ,这里R=R(B)R(0) , R(0) 、R(B)分别为磁场强度为0和B下磁阻传感器的电阻阻值。因此也可以用磁阻传感器电阻的相对改变量R/R(0)来表示磁阻效应的大小。 测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。 第9页,共27页,2022年,5月20日,10点35分,星期

7、五第10页,共27页,2022年,5月20日,10点35分,星期五 尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率R/R(0)与外磁场的关系都是相似的。实验证明,磁阻效应对外加磁场的极性不灵敏,就是同强度正负磁场的磁阻效应相同。一般情况下外加磁场较弱时,电阻相对变化率R/R(0)正比于磁场强度B的二次方;随磁场强度的加强,R/R(0)与磁场强度B呈线性函数关系;当外加磁场超过特定值时,R/R(0)与磁场强度B的响应会趋于饱和。 另外,R/R(0)对总磁场的方向很灵敏,总磁场为外磁场与内磁场之和,而内磁场与磁阻薄膜的性质和几何形状有关。 第11页,共27页,2022年,5月20日,10点

8、35分,星期五四、实验仪器介绍 实验采用DH4510磁阻效应综合实验仪,研究锑化铟(InSb)磁阻传感器的磁阻特性,DH4510磁阻效应综合实验仪由信号源和测试架两部分组成。图3为该仪器示意图。图4为该仪器线路连接图。第12页,共27页,2022年,5月20日,10点35分,星期五第13页,共27页,2022年,5月20日,10点35分,星期五第14页,共27页,2022年,5月20日,10点35分,星期五五、实验内容 1、在锑化铟磁阻传感器工作电流保持不变的条件下,测量锑化铟磁阻传感器的电阻与磁感应强度的关系。作R/R(0)与B的关系曲线,并进行曲线拟合。 2、用磁阻传感器测量一个未知的磁场

9、强度,与毫特计测得的磁场强度相比较,估算测量误差。 第15页,共27页,2022年,5月20日,10点35分,星期五六、实验操作步骤 仪器开机前须将IM调节电位器、Is电流调节电位器逆时针方向旋到底。1、信号源的“IM直流源”端用导线接至测试架的“励磁电流”输入端,红导线与红接线柱相连,黑导线与黑接线柱相连。调节“IM电流调节”电位器可改变输入励磁线圈电流的大小,从而改变电磁铁间隙中磁感应强度的大小。2、将实验仪信号源背部的插座通过专用的连接线接至测试架的控制输入端,这是一路提供继电器工作的12V直流控制电源,作为继电器的控制电压。3、信号源上“Is直流恒流源”输出用导线接至工作电流切换继电器

10、K1接线柱的中间两端,红导线与红接线柱相连,黑导线与黑接线柱相连。第16页,共27页,2022年,5月20日,10点35分,星期五4、信号源的“信号输入”两端用导线接至输出信号切换继电器K2接线柱的中间两端,红导线与红接线柱相连,黑导线与黑接线柱相连。5、将继电器K1接线柱的下面两端与继电器K2接线柱的下面两端相连,红导线与红接线柱相连,黑导线与黑接线柱相连。6、将锑化铟(InSb)磁阻传感器(蓝、绿引出线)的两端与工作电流切换继电器K1接线柱的下面两端相连,红的香蕉插接红接线柱,黑的香蕉插接黑接线柱。即蓝引出线接至红接线柱,绿引出线接至黑接线柱。7、砷化镓(GaAs)霍尔传感器的的四引出线按

11、线的长短已分成两组,红、灰为一组(为工作电流输入端),橙、黄为一组(为霍尔电压输出端),红、灰这一组线接至工作电流切换继电器K1接线柱的上面两端,橙、黄这一组线接至输出信号切换继电器K2接线柱的上面两端。红的香蕉插接红接线柱,黑的香蕉插接黑接线柱。 第17页,共27页,2022年,5月20日,10点35分,星期五8、确认接线正确完成后,接通电源,将信号源上左边的“信号选择”切换开关处于弹起状态,此时励磁信号为直流信号;将信号源右边的“信号选择” 切换开关处于按下状态,测试架的切换开关也处于按下状态,这时将测试架上取出的霍尔电压信号输入到信号源,经内部处理转换成磁场强度由表头显示。9、调节Is调

12、节电位器让Is表头显示为1.00mA,然后调节IM,使磁场强度显示为0.x mT,记下励磁电流值的大小。10、弹起信号源右边的切换开关和测试架上的切换开关,测量并记录该磁场强度下对应的磁阻电压。注意:这时的Is表头显示应为1.00mA。11、将测试架上及信号源右边的切换开关按下,再调节IM调节电位器,使磁场强度显示为20mT,记下该磁场强度及对应的励磁电流值。测量并记录该磁场强度下对应的磁阻电压。 第18页,共27页,2022年,5月20日,10点35分,星期五12、重复以上1011步骤,测量出磁场强度大小分别为0,20,40,60,80,100,150,200,250,300,350,400

13、,450,500mT,分别记录电磁铁的励磁电流IM/mA和InSb两端的电压UR/mV 。13、在B0.12T时对R/R(0)作曲线拟合,求出R与B的关系。14、调节IM电流,使电磁铁产生一个未知的磁场强度。测量磁阻传感器的磁阻电压,根据求得的R/R(0)与B的关系曲线,求得磁场强度。15、用仪器所配的毫特计测量该磁场强度,将测得的磁场强度作为准确值与磁阻传感器测得的磁场强度值相比较,估算测量误差。 第19页,共27页,2022年,5月20日,10点35分,星期五七、实验数据记录作出R/R与B关系曲线数据表: 第20页,共27页,2022年,5月20日,10点35分,星期五 调节IM电流,使电

14、磁铁产生一个未知的磁场强度。测量磁阻传感器的磁阻电压,根据求得的R/R(0)与B的关系曲线,求得磁场强度。用仪器所配的毫特计测量该磁场强度,将测得的磁场强度作为准确值与磁阻传感器测得的磁场强度值相比较,估算测量误差。第21页,共27页,2022年,5月20日,10点35分,星期五思考题:1、磁阻效应是怎样产生的?磁阻效应和霍尔效应有何内部联系?2、实验时为何要保持霍尔工作电流和流过磁阻元件的电流不变?3、不同的磁场强度时,磁阻传感器的电阻值与磁感应强度关系有何变化?4、磁阻传感器的电阻值与磁场的极性和方向有何关系?5、你能解释在低频交流磁场激励下,励磁信号和磁阻传感器输出信号构成的李萨如图形如“蝴蝶”的原因吗? 第22页,共27页,2022年,5月20日,10点35分,星期五数据处理示例:第23页,共27页,2022年,5月20日,10点35分,星期五根据表1数据画图:第24页,共27页,2022年,5月20日,10点35分,星期五对B0.12T的8组数据用最小二乘法处理:第2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论