欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > DOC文档下载  

    山西煤层气测井解释方法研究

    • 资源ID:10346812       资源大小:1.74MB        全文页数:18页
    • 资源格式: DOC        下载积分:30积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    山西煤层气测井解释方法研究

    1山西煤层气测井解释方法研究一 煤层电性响应特征煤层是一种特殊沉积岩,煤层在煤热演化过程中主要产生的副产品是甲烷和少量水,而煤的颗粒细表面积大,每吨煤在 0.929×108m2以上,因此煤层具有强吸附能力,所以煤层的甲烷气含量和含氢指数很高。由于煤层的上述特性,反映在电性曲线上的特征是“三高三低”。三高是:电阻率高、声波时差大、中子测井值高(图 1) 。三低是:自然伽马低、体积密度低、光电有效截面低。根据多井资料统计,煤层的双侧向电阻率变化一般 1007000·m,变质程度差的煤层电阻率一般 30350·m。 测井曲线反映煤层的声波时差一般 370410s/m;中子值30%55%;自然伽马一般 2080API;密度测井值 1.281.7g/cm3;光电有效截面 0.351.5b/e 之间。不同类型的煤,在电性上的响应有较大的变化。表 1 中列出了几种煤类与测井信息的响应值。表 1 不同煤类骨架测井响应值煤类密度(g/cm3)中子 (%)声波时差(s/m)岩性密度(b/e)无烟煤 1.47 38 345 0.16烟煤 1.24 60+ 394 0.17褐煤 1.19 52 525 0.22图 1 晋 1-1 井煤层电性典型曲线图3二 煤层工业参数解释煤的重要参数有:煤层有效厚度、镜质反射率、含气量、固定碳、水分、灰分、挥发分等,这些参数是研究煤层组分,评价煤层气的地质勘探、工业分析及经济效果的依据。上述参数一般由钻井取芯后对煤层岩心进行实验测定得出。1、煤层厚度划分煤层有效厚度根据电性曲线对煤层的响应特征,以自然伽马和密度或声波时差曲线的半幅度进行划分(见图 1) ,起划厚度为 0.6m。2、含气量计算煤层含气量与煤层的厚度、煤的热演化程度、煤层深度、温度和压力等参数有密切的关系,由于煤的内表面积大,储气能力高,据国外资料统计,煤层比相同体积的常规砂岩多储 12 倍以上的天然气,相当于孔隙度为 30%的砂岩含水饱和度为零时的储气能力。据此应用气体状态方程和煤层密度计算含气量:P1V1RT 1 (1)P2V2RT 2 (2)则 V 1T 1·P2·V2/ P1T2 (3)式中: P 1地面压力,0.1MPa;V1地面气体体积,m 3;T1地面绝对温度,273.15+15;4P2地下深度压力,MPa;V2煤孔隙度按 30%计算的体积,0.3m 3/m3;T2地下深度的绝对温度,273.15+T;R气体常数。地层温度由井温曲线读出或由地区性地温梯度计算得到。煤层含气量:CV 1/DEN (4)式中: DEN煤体积密度,t/m 3:C煤层含气量,m 3/t。利用上式对晋试 1 井煤层的含气量进行计算,其中三号煤层计算平均含气量 21.71m3/t,该层有六块岩心实验测定含气量在 12.127.2m3/t,平均为 22.07 m3/t,数据对比反映出计算值误差较小。3、固定碳、水分、灰分、挥发分计算固定碳、水分、灰分、挥发分通常在实验室测定。煤水分是指空气干燥状态下吸附或凝聚在煤层颗粒间毛细管中的水分,测定值称为空气干燥基水分(Mad) ,简称水分。煤灰分(Aad)是指煤中所有可燃物全部燃烧,煤中的矿物质在一定温度下产生一系列分解、化合等复杂反应剩下的残渣。挥发分(Vdaf)是指在煤高温条件下隔绝空气加热,冷却后煤质量减少的百分含量减去该煤样水分即为挥发分产率,简称挥发分。固定碳(Fc)是煤的百分含量 100%减去水分、灰分、挥发分后的5值。固定碳、水分、灰分、挥发分相互间有较好的关系。图 2 是灰分与固定碳、挥发分、水分的关系图,图中数据显示,随着灰分增加,固定碳急剧降低,挥发发缓慢增大,而水分由于含量较低变化趋势近似于一条水平线。根据图中数据间的变化规律可建立以下关系式:固定碳与灰分关系式 Fc-1.1222Aad+93.794 (5)挥发分与灰分关系式 Vdaf0.1532Aad+4.2868 (6)水分与灰分关系式 Mad-0.02Aad+2.2481 (7)Vdaf= 0.1532Aad + 4.2868Fc = -1.1222Aad + 93.794Mad = -0.02Aad + 2.248101020304050607080901000 5 10 15 20 25 30灰 分 ( %)F(%)固 定 碳挥 发 分水 分图 2 煤层工业组分关系图煤组分测井解释是采用交会图方法,图 3 是根据煤的固定碳、水分、灰分三种组分实验值与声波、密度平均响应值的关系图版,图中6三种组分形成的三角形经等分后可以计算出煤的固定碳、水分和灰分的百分含量。由图中煤层数据分析,煤质好的层固定碳含量高,水分、灰分含量低;媒质差的层灰分含量相对高。00.20.40.60.811.21.41.61.822.22.42.62.83200 250 300 350 400 450 500 550 600 650AC( s/m)DEN(g/cm3)煤泥 煤水 点灰 点碳 点 Fc=100% Mad=100%Aad=100%图 3 煤组分声波密度交会图三 煤层物性参数解释煤层的裂缝较发育,主要有天然方块网状割理缝和构造缝,因此孔隙类型属裂缝孔隙双重孔隙结构。煤的基质是主要的储气空间,一般煤的基质孔隙度和渗透率很低,气吸附在微孔隙内表面上,在浓7度差的作用下,穿过基质扩散到裂缝中,裂缝的渗透率相对较高,因此裂缝是气渗流的主要通道。由于煤层的各向异性和强非均质性,煤层的物性参数一般采用岩心物性分析测定或由核磁测井测量来确定煤层孔隙度和渗透率。当无岩心物性分析资料及核磁测井时,采用常规测井信息中的声波时差、体积密度、补偿中子来计算煤层的物性参数。1、 煤层孔隙度计算煤层基质孔隙度计算采用声波时差的平均时间公式:(ttma)/(tftma) (8)式中 煤层孔隙度,小数;t煤层声波测井值,s/m;tma岩石骨架声波时差,380410s/m;tf流体声波时差,620s/m。煤层裂缝孔隙度采用双侧向电阻率计算:f(Rmf(1/Rs1/Rd) ) 1/mf (9)式中 f煤层裂缝孔隙度,小数;Rmf钻井泥浆滤液电阻率,0.1·m;mf裂缝指数,1.1-1.5;Rd深侧向电阻率,·m;Rs浅侧向电阻率,·m。82、煤层渗透率计算煤层渗透率计算方程选用经验公式:Kb=( 79· 2.25) 2/Swi2 ( 10)式中 K b煤层基质渗透率,mD;Swi束缚水饱和度。裂缝渗透率:K f=8.333× fB2 (11)式中 K f煤层裂缝渗透率,mD;B裂缝开度,m。B = 2500*Rmf*(1/RLLS - 1/RLLD)或 B = 2500*Rmf*(1/RLLD - 1/RLLS)四 煤层气测井数字处理与解释1、煤层测井信息数字处理根据煤层的电性响应特征和煤层参数的解释模型,采用数字处理的方法完成上述工作。数字处理软件主要选用 Geoframe 或 Forward中的煤层分析模块,复杂岩性处理模块以及自身研制的处理软件,同时考虑区域地质特性合理选取参数,经过精细处理获得煤层厚度、水分、灰分、挥发分、固定碳、含气量等重要参数。通过曲线组合提供处理成果图(图 4) ,显示井的岩性剖面、矿物含量、煤组分参数、不同岩性的孔隙度、渗透率、泥质含量等。同时根据划分的解释层提供单井测井解释成果表(表 2) ,详细列出各项参数数据。9图 4 某井煤层数字处理成果图10某井 煤层气测井解释数据表层位 层号 SDEP( m) EDEP(m) H(m) Rt (·m) AC ( s/m) DEN(g/cm3) GR (API ) 水分(% ) 灰分(% ) 固定碳(% ) 挥发分(% ) POR(%) PERM(mD) 含气量(m 3/t) SH(%) 结论 岩性1 442.9 445 2.1 98 213 2.72 88.05 3.62 0.047 33.57 干层 灰岩2 445 452.4 7.4 121 235 2.67 84.82 5.35 1.87 31.63 干层 砂岩3 508 509.5 1.5 104 222 2.76 104.28 0.5 0 43.65 干层 灰岩4 521.7 527 5.3 2198 392 1.41 64.97 3.31 8.45 82.9 5.34 2.98 0.023 21.71 气层 煤5 537.8 539.7 1.9 213 234 2.5 74.91 6.99 0.965 26.61 干层 砂岩6 550.2 552.5 2.3 38684 193 2.74 52.73 3.05 0.045 15.46 干层 灰岩7 566.7 567.5 0.8 56 334 1.74 99.65 0 11.1 80.28 8.62 0.33 0.003 12.17 41.38 含气层 泥煤8 571.8 579 7.2 117 220 2.63 87.53 3.03 0.187 32.93 干层 砂岩9 589.9 592.6 2.7 29968 194 2.69 35.22 3.66 0.025 7.92 干层 灰岩10 598.2 606.1 7.9 22579 178 2.67 51.43 1.41 0.072 14.91 干层 灰岩11 607.2 609.2 2 6541 368 1.39 51.85 2.46 7.55 84.82 5.17 2.71 0.018 19.82 气层 煤12 619.2 648.9 29.7 2439 159 2.7 31.52 0.46 0.01 6.64 干层 砂岩112、煤组分及煤气层电性图版分析利用数字处理结果得到的煤层组分及解释结论与电性数据建立交会图,分析煤组分与电性的相互关系。图 5、图 6 分别是灰分与自然伽马、灰分与体积密度的交会图,根据图中关系得出:自然伽马、体积密度增高,煤层灰分含量增大;反之,灰分含量降低。图 7、图 8 分别是含气量与自然伽马、含气量与体积密度的交会图,图中关系显示:自然伽马、体积密度降低,煤层含气量增高;反之,煤层含气量降低。图 9 是煤层的深侧向电阻率与声波时差交会图,图中反映,结论为气层的煤层电阻率高,声波时差大;含气层结论的煤层,电阻率低,声波时差相应变小。按数据下限划分气层电阻率大于 150·m,声波时差大于 365s/m。图 10 是是煤层的深侧向电阻率与计算的含气量交会图,图中显示,气层的含气量一般大于 19%,电阻率大于 150·m。根据上述图版分析结果认为,当区域煤层的试气资料增多,层数增加后,利用电性参数和含气量参数可以建立煤层气层电性解释标准。3、煤层产气量电性预测利用煤层计算的孔隙度和渗透率的乘积与产气量建立交会图,分12析物性参数与产能的关系,来达到产能预测的目的。0510152025300 50 100 150 200 250GR( API)灰分(%)图 5 自然伽马与灰分交会图0510152025301 1.25 1.5 1.75 2 2.25 2.5DEN( g/cm3)灰分(%)图 6 体积密度与灰分交会图1305101520250 50 100 150 200 250GR( API)含气量(m3/t)图 7 自然伽马与含气量交会图05101520251 1.25 1.5 1.75 2 2.25 2.5DEN( g/cm3)含气量(m3/t)14图 8 体积密度与含气量交会图10100100010000250 300 350 400 450 500 550 600 650AC( s/m)RD(·m)气 层含 气 层图 9 深侧向电阻率与声波时差交会图101001000100000 10 20 30 40 50含 气 量 ( m3/t)RD(·m)气 层含 气 层15图 10 深侧向电阻率与含气量交会图图 11 是根据晋试 1、晋 1-1 等 6 口井平均日产气量与孔隙度、渗透率乘积关系图。图中显示气层产量与物性数据有较好的对应关系,产能增高,孔渗乘积值增大,对图版数据拟合后相关系数 R=0.78。产能预测方程: Q= 657.5Ln(x) + 3192.1 (12)式中 X孔隙度、渗透率乘积;Q日产气量。煤层产气量的高低与煤的孔隙体积大小、煤的热演化程度、煤的含气量大小、煤层的裂缝发育程度和裂缝连通程度等因素有关,其中煤层裂缝发育程度和裂缝的连通性对产气量有直接的影响。因此,电性资料对裂缝的研究和裂缝渗透率计算的研究是下阶段的重点。Q= 657.5Ln(x) + 3192.1R2 = 0.6123101001000100000.001 0.01 0.1 1 10 100 *PERM( mD)日产气量(m3)16图 11 煤层气产能电性预测图版五 煤层顶底隔板层电性评价煤层气藏的保存程度取决于煤层的顶底板层的封隔性和侧向封隔程度。侧向封隔性主要受构造断层影响,纵向封隔性主要由封隔层岩性、物性和岩石机械力学特性等因素决定。电性资料研究的主要是顶底隔层的封隔性。以晋城地区井为列评价隔层的特性。1、封隔层沉积稳定封盖性能好晋城地区井的地层岩性剖面处理结果显示,煤层顶底板层的岩性主要是泥岩、灰岩,其次是灰质砂岩、泥质砂岩和灰质泥岩,统计各类岩性的电性有以下几点: 泥岩层厚度大,沉积稳定,压实程度高3 号煤层上覆地层岩性以泥岩为主夹泥质砂岩、灰质砂岩和灰岩,厚度在 1560m 之间,区域上沉积稳定。泥岩的密度 2.62.7g/cm3,声波时差 220250s/m,因此压实程度较高。3 号煤层与 15 号煤层之间岩性也以厚层泥岩为主,15 号煤层底部一般有一套厚 10m 左右的泥岩,泥岩的电性特征与上部泥岩相同。泥岩下部是厚层的灰岩。 砂岩、灰岩物性差,以致密层为主17砂岩类层体积密度 2.552.7 g/cm3,声波时差 210240s/m ,电阻率 50150·m,泥质含量 2045%,孔隙度 58%,渗透率0.011mD,数据显示为致密层。灰岩层密度 2.712.78 g/cm3,声波时差 200225s/m,孔隙度 05%,渗透率小于 0.5 mD,解释为致密层。上述数据说明煤层顶底板层都具有较好的封隔性能,煤层气保护条件好。2、封隔层具有较强的弹性力学特性利用岩石力学公式对煤层和隔板层的弹性力学参数计算,分析岩石机械弹性能。3 号和 15 号煤层计算的杨氏模量为(0.700.94)×10 4MPa,泊松比 0.190.25。3 号煤层上覆泥岩的杨氏模量(2.483.7)×10 4MPa,泊松比0.320.33。底部泥岩层的杨氏模量(2.572.99)×10 4MPa,泊松比 0.330.38。15 号煤层顶部灰岩的杨氏模量(6.166.98)×10 4MPa,泊松比0.270.30。底部泥岩层的杨氏模量(2.764.56)×10 4MPa,泊松比 0.320.35。上述岩石弹性力学参数比对显示,泥岩、灰岩的杨氏模量和泊松18比数值较高而且均大于煤层,反映封隔层的机械性能较强。

    注意事项

    本文(山西煤层气测井解释方法研究)为本站会员(huan****nac)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!