六年级举一反三
第一讲 定义新运算。从而解答某些算式的一种运算。从而解答某些算式的一种运算。解答定义新运算。解答定义新运算。转化为常规的四则运算算式进行计算。转化为常规的四则运算算式进行计算。因为分数的分子与分母加上了一个数。所以分数的分子与分母的差不变。所以分数的分子与分母的差不变。从而解答某些特殊算式的一种运算。解题 专题简析。
六年级举一反三Tag内容描述:<p>1、定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、”不同的。新定义的算式中有括号的。</p><p>2、六年级数学奥数培训资料 第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、”不同的。新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求。</p><p>3、第二十一周 抓“不变量”解题专题简析:一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。例1将的分子与分母同时加上某数后得,求所加的这个数。解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的,由此可求出新分数的分子和分母。”分母:(61-43)(1)81分子:816381-6120或63-4320解法。</p><p>4、一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。2、 精讲精练【例题1】筑路队修一段路,第一天修了全长的又100米,第二天修了余下的 ,还剩500米,这段公路全长多少米?一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多3公顷,还剩下35公顷。</p><p>5、第一周 定义新运算,专题简析: 定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。 解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。 定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、”不同的。 新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。,例题1: 假设a*b=(a+b)+(a-b), 求13*5和13*(5*4),13*5 =(13+。</p><p>6、第3讲 简便运算(二) 一、知识要点 计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。 二、精讲精练 【例题1】计算:12342341。</p><p>7、第二十一周 抓“不变量”解题 专题简析: 一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并。</p><p>8、第三十五周 行程问题(三)专 题 简 析:本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。例题1:客车和货车同时从A、B两地相对开出。客车 每小时行驶50千米,货车的速度是客车的80%,相遇后客车继续行3.2小时到达B地。A、B两地相距多少千米?如图35-1所示,要求A、B两地。</p><p>9、第二十一周 抓“不变量”解题专题简析:一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。例1将的分子与分母同时加上某数后得,求所加的这个数。解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分。</p><p>10、第十五周 比的应用(二) 专 题 简 析: 比是反映数量关系的一种常见形式,也是解数学题的一种重要工具,有了它,我们处理倍数关系、解答分数应用题就方便灵活得多。在这一讲,我们讲探讨稍复杂的比是应用题。 例题1。 甲、乙两个学生放学回家,甲要比乙多走的路,而乙走的时间比甲少,求甲、乙两人速度的比。 【思路导航】因为 速度路程时间,所以,甲、乙速度的比: (1)甲、乙路程的比:。</p>