同济大学高等数学课件
目录 上页 下页 返回 结束 第四节 • 基本积分法。分部积分法 • 初等函数 求导 初等函数 积分 一、有理函数的积分 二、可化为有理函数的积分举例 有理函数的积分 本节内容。目录 上页 下页 返回 结束 一、 有理函数的积分 有理函数。一、隐函数的导数。二、由参数方程确定的函数的导数。
同济大学高等数学课件Tag内容描述:<p>1、第三章 中值定理 应用 研究函数性质及曲线性态 利用导数解决实际问题 罗尔中值定理 拉格朗日中值定理 柯西中值定理 泰勒公式 (第三节) 推广 微分中值定理 与导数的应用 一、罗尔( Rolle )定理 第一节 机动 目录 上页 下页 返回 结束 二、拉格朗日中值定理 三、柯西(Cauchy)中值定理 中值定理 第三章 费马(fermat)引理 一、罗尔( Rolle )定理 且 存在 证: 设 则 费马 目录 上页 下页 返回 结束 证毕 罗尔( Rolle )定理 满足: (1) 在区间 a , b 上连续 (2) 在区间 (a , b) 内可导 (3) f ( a ) = f ( b ) 使 证:故在 a , b 上取得最大值 M 。</p><p>2、二、 导数应用 习题课 一、 微分中值定理及其应用 机动 目录 上页 下页 返回 结束 中值定理及导数的应用 第三章 拉格朗日中值定理 一、 微分中值定理及其应用 1. 微分中值定理及其相互关系 罗尔定理 柯西中值定理 泰勒中值定理 机动 目录 上页 下页 返回 结束 2. 微分中值定理的主要应用 (1) 研究函数或导数的性态 (2) 证明恒等式或不等式 (3) 证明有关中值问题的结论 机动 目录 上页 下页 返回 结束 3. 有关中值问题的解题方法 利用逆向思维 , 设辅助函数 .一般解题方法: (1)证明含一个中值的等式或根的存在 , (2) 若结论中涉及到含中值。</p><p>3、第五章 积分学 不定积分 定积分 定积分 第一节 一、定积分问题举例 二、 定积分的定义 三、 定积分的性质 机动 目录 上页 下页 返回 结束 定积分的概念及性质 第五章 一、定积分问题举例 1. 曲边梯形的面积 设曲边梯形是由连续曲线 以及两直线 所围成 , 求其面积 A . 机动 目录 上页 下页 返回 结束 矩形面积 梯形面积 解决步骤 : 1) 大化小.在区间 a , b 中任意插入 n 1 个分点 用直线将曲边梯形分成 n 个小曲边梯形; 2) 常代变.在第i 个窄曲边梯形上任取 作以为底 , 为高的小矩形, 并以此小 梯形面积近似代替相应 窄曲边梯形面积得 机动。</p><p>4、目录 上页 下页 返回 结束 第四节 基本积分法 :换元积分法 ; 分部积分法 初等函数 求导 初等函数 积分 一、有理函数的积分 二、可化为有理函数的积分举例 有理函数的积分 本节内容: 第四章 直接积分法 ; 目录 上页 下页 返回 结束 一、 有理函数的积分 有理函数: 时,为假分式;时,为真分式 有理函数 相除 多项式 + 真分 式 分解 其中部分分式的形式为 若干部分分式之和 目录 上页 下页 返回 结束 例1. 将下列真分式分解为部分分式 : 解: (1) 用拼凑法 目录 上页 下页 返回 结束 (2) 用赋值法 故 目录 上页 下页 返回 结束 (3) 混合法 原式 。</p><p>5、目录 上页 下页 返回 结束 第二节 一、 偏导数概念及其计算 二 、高阶偏导数 偏 导 数 第九章 目录 上页 下页 返回 结束 一、 偏导数定义及其计算法 引例: 研究弦在点 x0 处的振动速度与加速度 , 就是 中的 x 固定于 x0 处,求 一阶导数与二阶导数. 关于 t 的将振幅 目录 上页 下页 返回 结束 定义1.在点 存在, 的偏导数,记为 的某邻域内 则称此极限为函数 极限 设函数 注意: 目录 上页 下页 返回 结束 同样可定义对 y 的偏导数 若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x 则该偏导数称为偏导函数, 也简称为 偏导数 , 记为。</p><p>6、第四节,一、隐函数的导数,二、由参数方程确定的函数的导数,三、相关变化率,机动 目录 上页 下页 返回 结束,隐函数和参数方程求导,相关变化率,第二章,一、隐函数的导数,若由方程,可确定 y 是 x 的函数 ,由,表示的函数 , 称为显函数 .,例如,可确定显函数,可确定 y 是 x 的函数 ,但此隐函数不能显化 .,函数为隐函数 .,则称此,隐函数求导方法:,两边对 x 求导,(含导数 的方程),机动 目录 上页 下页 返回 结束,例1. 求由方程,在 x = 0 处的导数,解: 方程两边对 x 求导,得,因 x = 0 时 y = 0 , 故,确定的隐函数,机动 目录 上页 下页 返回 结束,例。</p><p>7、无穷级数,无穷级数,无穷级数是研究函数的工具,表示函数,研究性质,数值计算,数项级数,幂级数,付氏级数,第十一章,常数项级数的概念和性质,一、常数项级数的概念,二、无穷级数的基本性质,三、级数收敛的必要条件,*四、柯西审敛原理,机动 目录 上页 下页 返回 结束,第一节,第十一章,一、常数项级数的概念,引例1. 用圆内接正多边形面积逼近圆面积.,依次作圆内接正,边形,这个和逼近于圆的面积 A .,设 a0 表示,即,内接正三角形面积,ak 表示边数,增加时增加的面积,则圆内接正,机动 目录 上页 下页 返回 结束,引例2.,小球从 1 米高处自由落下, 每次。</p><p>8、四、二次曲面,第三节,一、曲面方程的概念,二、旋转曲面,三、柱面,机动 目录 上页 下页 返回 结束,曲面及其方程,第七章,一、曲面方程的概念,求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的,化简得,即,说明: 动点轨迹为线段 AB 的垂直平分面.,引例:,显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.,解:设轨迹上的动点为,轨迹方程.,机动 目录 上页 下页 返回 结束,定义1.,如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:,(1) 曲面 S 上的任意点的坐标都满足此方程;,则 F( x, y, z ) = 0 叫做曲面 S 的方程,曲面 S 。</p><p>9、第九章,一元函数积分学,多元函数积分学,重积分,曲线积分,曲面积分,重 积 分,三、二重积分的性质,第一节,一、引例,二、二重积分的定义与可积性,四、曲顶柱体体积的计算,机动 目录 上页 下页 返回 结束,二重积分的概念与性质,第九章,解法: 类似定积分解决问题的思想:,一、引例,1.曲顶柱体的体积,给定曲顶柱体:,底: xoy 面上的闭区域 D,顶: 连续曲面,侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱面,求其体积.,“大化小, 常代变, 近似和, 求 极限”,机动 目录 上页 下页 返回 结束,1)“大化小”,用任意曲线网分D为 n 个区域,以它们为底把。</p><p>10、一、连续函数的运算法则,第九节,二、初等函数的连续性,机动 目录 上页 下页 返回 结束,连续函数的运算与,初等函数的连续性,第一章,定理2. 连续单调递增 函数的反函数,在其定义域内连续,一、连续函数的运算法则,定理1. 在某点连续的有限个函数经有限次和 , 差 , 积 ,( 利用极限的四则运算法则证明),商(分母不为 0) 运算,结果仍是一个在该点连续的函数 .,例如,例如,在,上连续单调递增,,其反函数,(递减).,(证明略),在 1 , 1 上也连续单调递增.,递增,(递减),也连续单调,机动 目录 上页 下页 返回 结束,定理3. 连续函数的复合函数是连续的.,在。</p><p>11、第七节,曲线的弯曲程度,与切线的转角有关,与曲线的弧长有关,机动 目录 上页 下页 返回 结束,主要内容:,一、 弧微分,二、 曲率及其计算公式,三、 曲率圆与曲率半径,平面曲线的曲率,第三章,一、 弧微分,设,在(a , b)内有连续导数,其图形为 AB,弧长,机动 目录 上页 下页 返回 结束,则弧长微分公式为,或,几何意义:,若曲线由参数方程表示:,机动 目录 上页 下页 返回 结束,二、曲率及其计算公式,在光滑弧上自点 M 开始取弧段, 其长为,对应切线,定义,弧段 上的平均曲率,点 M 处的曲率,注意: 直线上任意点处的曲率为 0 !,机动 目录 上页 下页 返回。</p><p>12、二、几个初等函数的麦克劳林公式,第三节,一、泰勒公式的建立,三、泰勒公式的应用, 应用,用多项式近似表示函数,理论分析,近似计算,泰勒 ( Taylor )公式,第三章,1. 求 n 次近似多项式,2. 余项及误差估计:,(称为余项),(称为误差),s.t.,一、泰勒公式的建立,如何提高精度 ?,如何估计误差 ?,公式 称为 的 n 阶泰勒公式 .,公式 称为n 阶泰勒公式的拉格朗日余项 .,泰勒(Taylor)中值定理 :,阶的导数 ,时, 有,其中,则当,泰勒(英) (1685 1731),佩亚诺(Peano)余项 麦克劳林(Maclaurin)公式,麦克劳林 (英) (1698 1746),佩亚诺 (意大利) (18。</p><p>13、二、几个初等函数的麦克劳林公式,第三节,一、泰勒公式的建立,三、泰勒公式的应用, 应用,用多项式近似表示函数,理论分析,近似计算,泰勒 ( Taylor )公式,第三章,1. 求 n 次近似多项式,2. 余项及误差估计:,(称为余项),(称为误差),s.t.,一、泰勒公式的建立,如何提高精度 ?,如何估计误差 ?,公式 称为 的 n 阶泰勒公式 .,公式 称为n 阶泰勒公式的拉格朗日余项 .,泰勒(Taylor)中值定理 :,阶的导数 ,时, 有,其中,则当,泰勒(英) (1685 1731),佩亚诺(Peano)余项 麦克劳林(Maclaurin)公式,麦克劳林 (英) (1698 1746),佩亚诺 (意大利) (18。</p><p>14、第四节,基本积分法 : 直接积分法 ;,换元积分法 ;,分部积分法,初等函数,初等函数,机动 目录 上页 下页 返回 结束,一、有理函数的积分,二、可化为有理函数的积分举例,有理函数的积分,本节内容:,第四章,一、 有理函数的积分,有理函数:,时,为假分式;,时,为真分式,有理函数,多项式 + 真分 式,分解,其中部分分式的形式为,若干部分分式之和,机动 目录 上页 下页 返回 结束,例1. 将下列真分式分解为部分分式 :,解:,(1) 用拼凑法,机动 目录 上页 下页 返回 结束,(2) 用赋值法,故,机动 目录 上页 下页 返回 结束,(3) 混合法,机动 目录 上页 下页 返。</p><p>15、第八节,一般周期的函数的傅里叶级数,一、以2 l 为周期的函数的,傅里叶展开,机动 目录 上页 下页 返回 结束,二、傅里叶级数的复数形式,第十一章,一、以2 l 为周期的函数的傅里叶展开,周期为 2l 函数 f (x),周期为 2 函数 F(z),变量代换,将F(z) 作傅氏展开,f (x) 的傅氏展开式,机动 目录 上页 下页 返回 结束,设周期为2l 的周期函数 f (x)满足收敛定理条件,则它的傅里叶展开式为,(在 f (x) 的连续点处),其中,定理.,机动 目录 上页 下页 返回 结束,证明: 令, 则,令,则,所以,且它满足收敛,定理条件,将它展成傅里叶级数:,( 在 F(z) 的连续点处 。</p><p>16、第九章,第五节,一、一个方程所确定的隐函数 及其导数,二、方程组所确定的隐函数组 及其导数,隐函数的求导方法,1) 方程在什么条件下才能确定隐函数 .,例如, 方程,C 0 时, 能确定隐函数,C 0 时, 不能确定隐函数,2) 方程能确定隐函数时,研究其连续性,可微性及求导方法问题.,本节讨论:,一、一个方程所确定的隐函数及其导数,定理1. 设函数,则方程,单值连续函数 y = f (x) ,并有连续,(隐函数求导公式),定理证明从略,仅就求导公式推导如下:, 具有连续的偏导数;,的某邻域内可唯一确定一个,在点,的某一邻域内满足,满足条件,导数,两边对 x 求导,在。</p><p>17、习题课,一、 导数和微分的概念及应用,机动 目录 上页 下页 返回 结束,二、 导数和微分的求法,导数与微分,第二章,一、 导数和微分的概念及应用,导数 :,当,时,为右导数,当,时,为左导数,微分 :,机动 目录 上页 下页 返回 结束,关系 :,可导,可微,( 思考 P124 题1 ),应用 :,(1) 利用导数定义解决的问题,(3)微分在近似计算与误差估计中的应用,(2)用导数定义求极限,1) 推出三个最基本的导数公式及求导法则,其他求导公式都可由它们及求导法则推出;,2) 求分段函数在分界点处的导数 ,及某些特殊,函数在特殊点处的导数;,3) 由导数定义证明一些命题.,。</p><p>18、习题课,一、 求不定积分的基本方法,机动 目录 上页 下页 返回 结束,二、几种特殊类型的积分,不定积分的计算方法,第四章,一、 求不定积分的基本方法,1. 直接积分法,通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 .,2. 换元积分法,(注意常见的换元积分类型),(代换: ),机动 目录 上页 下页 返回 结束,3. 分部积分法,使用原则:,1) 由,易求出 v ;,2),比,好求 .,一般经验: 按“反, 对, 幂, 指 , 三” 的顺序,排前者取为 u ,排后者取为,计算格式: 列表计算,机动 目录 上页 下页 返回 结束,多次分部积分的 规 律,机动 目录 上页 下。</p><p>19、习题课,1. 定积分的应用,几何方面 :,面积、,体积、,弧长、,表面积 .,物理方面 :,质量、,作功、,侧压力、,引力、,2. 基本方法 :,微元分析法,微元形状 :,条、,段、,带、,片、,扇、,环、,壳 等.,转动惯量 .,机动 目录 上页 下页 返回 结束,定积分的应用,第六章,例1. 求抛物线,在(0,1) 内的一条切线, 使它与,两坐标轴和抛物线所围图形的面积最小.,解: 设抛物线上切点为,则该点处的切线方程为,它与 x , y 轴的交点分别为,所指面积,机动 目录 上页 下页 返回 结束,且为最小点 .,故所求切线为,得 0 , 1 上的唯一驻点,机动 目录 上页 下页 返回 结。</p>