新版苏科版.
学习目标。3. 通过探究活动认识二力平衡满足的条件。1.学校为了解七年级学生参加课外兴趣小组活动情况。A. 73 B. 150 C. D.。本课时学习目标或任务。2.经历调查、收集、整理、分析数据的活动过程。
新版苏科版.Tag内容描述:<p>1、第11章 11.2反比例函数的图像与性质一、单选题(共9题;共18分)1、函数y=mx+n与y= ,其中m0,n0,那么它们在同一坐标系中的图像可能是( ) A、B、C、D、2、如图,已知直线y=x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CDx轴于点D,CEy轴于点E双曲线 与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且 ,则k的值是( )A、4B、2C、D、3、已知反比例函数y= 的图象经过点A(1,2),那么,k=( ) A、2B、2C、D、 4、点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A第二象限内,则这。</p><p>2、频率与概率的含义. 答案:在试验中,每个对象出现的频率程度不同,我们称每个对象出现的次数为频率,而每个对象出现的次数与总次数的比值为频率,即频率=。把事件发生的可能性大小的数值,称为事件发生的概率。【举一反三】典题:(2014黔东南州)掷一枚质地均匀的硬币10次,下列说法正确的是 ( )A可能有5次正面朝上 B必有5次正面朝上C掷2次必有1次正面朝上 D不可能10次正面朝上思路导引:掷一次硬币正面朝上的可能性为,可能是正面朝上,也可能是反面朝上。掷2次硬币不一定有1次正面朝上,C错误;掷10次硬币可能10次正面朝上,D错误;。</p><p>3、普查与抽样调查典型例题例题1 在下面的问题中为了得到数据采用普查还是抽样调查?为什么? (1)为了买校服,了解每个学生的衣服尺寸 (2)某农户为了了解承包的鱼塘中鱼的平均质量 (3)商检人员在某超市检查出售的饮料的合格率例题2 说明在下列问题中,总体、个体、样本各是什么? (1)为了了解一批灯泡的寿命,从中抽取10只进行试验 (2)为了考察某公园一年中每天进园的人数,在其中的30天里对进园的人数进行统计 例题3 某同学想了解自己学校的同学吃午饭的情况(有在校吃的,有回家吃的)。于是对她所在的班级九年级(5)班第2小组。</p><p>4、频率与概率有什么区别与联系【问题】三、频率与概率有什么区别与联系? 难易度: 关键词:概率、频率 答案:从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同. 【举一反三】典例:某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获。</p><p>5、第19讲圆周角题一:如图,点A在O上,点C在O内,点B在O外,则图中的圆周角是()AOAB BOAC CCOA DB 题二:如图,在图中标出的4个角中,圆周角有()个A1 B2 C3 D4 题三:如图,AOB是O的圆心角,AOB=80,则弧AB所对圆周角ACB的度数是( )A30 B40 C50 D80题四:已知:如图,AB,BC,AC是O的三条弦,OBC50,则A( )A.25 B.40 C.80 D.100题五:如图,已知ACB=50,ABC=60,则BOC= 题六:如图,若AB为O的直径,CD是O的弦,BCD=35,则AOD=_.第19讲圆周角题一。</p><p>6、 乘法公式(1)一、选择题1下列各式中计算正确的是【 】A(ab)2a2b2 B(a2b)2a22ab4b2C(m21)2m42m1 D(mn)2m22mnn22小兵计算一个二项整式的平方式时,得到正确结果是4x2_25y2,但中间一项不慎被污染了,这一项应是【 】A10xy B20xyC10xy D20xy 3若(x3y)2(x3y)2M,则M等于【 】 A6xy B6xyC12xy D12xy4已知,则的值为【 】A5 B10C1 D不能确定5要使等式成立,则的值为【 】A B。</p><p>7、第79讲期中期末串讲圆题一:如图,矩形ABCD是一厚土墙截面,墙长15米,宽1米在距D点5米处有一木桩E,木桩上拴一根绳子,绳子长7米,另一端拴着一只小狗,请画出小狗的活动区域,并求出这个区域的面积题二:如图,ABCD是围墙,ABCD,ABC=120,一根6米长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处)(1)请在图中画出羊活动的区域(2)求出羊活动区域的面积题三:如图,O的直径AB垂直于弦CD,垂足为E,A=22.5,OC= 4,则CD的长为()A2 B4 C4 D8题四:如图,CD是O的直径,将一块直角三角板的60角的顶点与圆心O重合,角的两边分。</p><p>8、第84讲 相似题一:(1)已知线段a=,b=9,则线段a,b的比例中项c是_,线段c,a,b的第四比例项d是_(2)若a:b:c=2:3:7,且ab+3=c2b,则c=_题二:(1)已知线段a=3,b=2,c=,则b,a,c的第四比例项d=_,a,b,(ab)的第四比例项是_,3a,(2ab)的比例中项是_(2)已知a:b:c=2:3:7且ab+c=12,求2a+b3c的值题三:如图,在已建立直角坐标系的44的正方形方格纸中,ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与ABC相似(C点除外),则格点P的坐标是_题四:如图,在正方形网格中,点A、B、C、D都是格点,。</p><p>9、第42讲 概率的求法(一)列举法新知新讲题一:问题1掷一枚硬币,朝上的面有_ 种可能问题2抛掷一个骰子,它落地时向上的数有_种可能问题3从标有1,2,3,4,5号的纸签中随意地抽取一根,抽出的签上的号码有_种可能题二:问题1掷一枚硬币,朝上的面有_ 种可能问题2抛掷一个骰子,它落地时向上的数有_种可能问题3从标有1,2,3,4,5号的纸签中随意地抽取一根,抽出的签上的号码有_种可能问题1P(反面朝上)=问题2P(点数为2)=P(点数为奇数)=问题3P(大于2且小于5的号)= P(抽到偶数号)=P(小于7的号)=金题精讲题一:如图是一个转盘,转盘分成7个相。</p><p>10、8.3统计分析帮你做预测 8.3统计分析帮你做预测教学目标1. 理解数据的收集、整理、分析、预测的过程2. 初步感受用函数图像可以大致的判断事物的发展趋势,进一步体会统计与预测之间的关系3通过实例进一步丰富对统计的认识,并能解决一些简单的问题教学重点体会数据的收集整理分析预测的过程,会利用统计知识解决实际问题教学难点感受用函数思想判断失误发展趋势的方法教学过程(教师)学生活动设计思路情境创设1我国19922004年国内生产总值(GDP)如下:(1)从表中,你能获得哪些信息?感受GDP与年份之间的函数关系,以及从数据中大致的感。</p><p>11、10.4分式的乘除(2)作业【基础题】 1.计算: = _.=_2.已知 m = ,则m等于 ( )A . - B. C. D. - 3.计算: (1) (2) (3)4. 先化简,再求值: ,再选一个自己喜欢的a的值带入求值10.4分式的乘除(2)板书设计1.怎样计算:ab?2试一试:计算 (1);(2)(xyx2)例3求值:,其中a10、b5、c4例4计算:1。</p><p>12、收取多少保险费才合理教学目标使学生进一步掌握概率的概念2、会利用概率计算随机事件发生的平均次数3、体会概率在保险业中的应用4、培养学生把数学问题转化为数学模型的能力5、培养提高学生能用数学知识解决实际问题的能力重 难 点利用概率知识解决实际问题学习过程旁注与纠错 情景引入(1)一个篮球运动员投篮命中的概率为0.8,是不是说他每投篮10次就一定有8次命中?应该如何理解?(2)一副洗好的52张小扑克牌中(没有大小王),闭上眼睛,随机地抽出一张牌,求下面事件的频率 (1)它是10;(2)它是黑色的【答案】 (1) (2)这和如。</p><p>13、7.2正弦、余弦备课组成员主备审核教学目标1、能够根据直角三角形的边角关系进行计算;2、能用三角函数的知识根据三角形中已知的边和角求出未知的边和角。重 难 点能够根据直角三角形的边角关系进行计算;用函数的观点理解正切,正弦、余弦值。学习过程旁注与纠错教学过程:一、知识回顾1、在RtABC中,C90,分别写出A的三角函数关系式:sinA_,cosA=_,tanA_。B的三角函数关系式_。2、比较上述中,sinA与cosB,cosA与sinB,tanA与tanB的表达式,你有什么发现_。3、练习:如图,在RtABC中,C=90,BC=6,AC=8,则sinA=_,cosA=_,tanA=_。如图,在。</p><p>14、频数与频率本课时学习目标或任务1能说出频数、频率的意义,知道频数与频率都能反映每个对象出现的频繁程度。2经历调查、收集、整理、分析数据的活动过程,体会数据在解决实际问题中的作用,发展数感和统计观念。本课时重难点或学习建议正确理解频数、频率的意义。本课时教学资源的使用多媒体课件学习过程学习要求或学法指导自学准备与知识导学为了增强环境保护意识,学校举办“环保节”,要求每班选出1名“环保小卫士”,选举办法如下: (1)民主提名候选人,全班同学举手表决,得票数较多的前3名为正式候选人: (2)在统一发放的白纸(选票)。</p><p>15、分式的乘除10.4分式的乘除(2)教学目标1 理解分式的加减乘除混合运算的法则。2 正确进行分式的加减乘除混合运算。3 提高运算能力。教学重点理解分式的加减乘除混合运算的法则。教学难点正确进行分式的加减乘除混合运算。教学过程(教师)二次备课一、板书课题、出示目标师:同学们,今天我们来学习10.4分式的乘除(2),本节课的学习目标是(投影): 1.理解分式的加减乘除混合运算的法则。2.正确进行分式的加减乘除混合运算。3.提高运算能力。二、自学指导师:要达到本节课的学习目标不是靠老师讲,而是靠大家自学。为了方便使大家顺利。</p><p>16、7.3探索更小的微粒学案一、预习目标1 知道分子不是微观粒子的最小单元,分子是由原子组成的. 2 知道原子还可以由更小的质子和中子组成.3. 了解原子的核式结构模型.二、导学流程问题一:既然分子是由原子组成的,那么,原子能否再分呢?分析:从摩擦起电的原因我们已经知道原子是由带负电荷的电子和带正电荷的原子核组成的,说明原子是可以再分的.问题二:那么,电子和原子核是怎样分布的?原子核是否可以再分了呢?活动一 :探究原子的核式结构模型1学生阅读课本P31图7-17和图7-18或者上网查阅相关资料,了解原子核的结构.(1)1911年,英。</p><p>17、周末作业十三1关于x的方程x2+mx1=0(m0)有一个根为x0,则x0的范围可能是()A 1x00 B x00 C 0x01 D x012关于x的方程(a3)x2+x+2a1=0是一元二次方程的条件是( )Aa0 Ba3 Ca Da33一元二次方程2x2+px+q=0的两个根为3,4,那么因式分解二次三项式2x2+px+q=()A (x3)(x4) B (x+3)(x+4) C 2(x3)(x4) D 2(x+3)(x+4)4如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则SBCE:SBDE等于( )A2:5 B14:25 C16:25 D4:2152015年秀山县政府投资2亿元人民币建设了廉租房8万平方米,预计。</p><p>18、周末作业八1方程x23x+7=0的两根为x1,x2,则下列表示正确的是()A x1+x2=3,x1x2=7 B x1+x2=3,x1x2=7C x1+x2=3,x1x2=7 D 以上全不对2广州亚运会的某纪念品原价188元,连续两次降价a%后售价为118元,下列所列方程中正确的是( )A 188(1a%)2118 B 188(1a%)2118C 188(12a%)118 D 188(1a2%)1183不在同一条直线上的三个点可以确定( )个圆.A 1 B 2 C 3 D 44已知关于x的方程(4a)ax50是一元二次方程,则它的一次项系数是()A 1 B 1 C 4 D 4或15用配方法解方程3x26x+1=0,则方程可变形为()A (x1)2 = B 3(x1)2 = C (3x1)2 =1 D (x3)2 =。</p><p>19、周末作业一1在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O的半径和的度数分别为( )A 2,22.5 B 3,30 C 3,22.5 D 2,302下列关于圆的叙述正确的有 圆内接四边形的对角互补;相等的圆周角所对的弧相等;正多边形内切圆的半径与正多边形的半径相等;同圆中的平行弦所夹的弧相等A 1个 B 2个 C 3个 D 4个3关于的一元二次方程有实数根,则的取值范围是 ()A B C D 4在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示。</p><p>20、10.1 分式班级_ 姓名_学习目标:1、了解分式的概念,会判断一个代数式是否是分式。2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。3、能分析出一个简单分式有、无意义的条件。4、会根据已知条件求分式的值。学习过程:一、课前预习:1、列出下列式子:(1)一块长方形玻璃板的面积为2,如果宽为am,那么长是 m。(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是 元。(3)某n边形的每个内角都相等,则它的每个内角为 度。(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m、n。这两块棉田平。</p>