欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

在讲数字2时

在x=0处取得极值的函数是()①y=x3。

在讲数字2时Tag内容描述:<p>1、第2课时导数与函数的极值、最值1函数的极值函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧f(x)0,右侧f(x)0,则点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0;而且在。</p><p>2、第2课时导数与函数的极值、最值基础题组练1(2020宁波质检)下列四个函数中,在x0处取得极值的函数是()yx3;yx21;y|x|;y2x.A BC D解析:选D.中,y3x20恒成立,所以函数在R上递增,无极值点;中y2x,当x0时函数单调递增,当x0时函数单。</p><p>3、第2课时 导数与函数的极值、最值基础达标1(2019宁波质检)下列四个函数中,在x0处取得极值的函数是()yx3;yx21;y|x|;y2x.ABCD解析:选D.中,y3x20恒成立,所以函数在R上递增,无极值点;中y2x,当x0时函数单调递增,当x0时函数单调递减,且y|x00,符合题意;中结合该函数图象可知当x0时函数单调递增,当x0时函数单调递减,且y|x00,符合题意;中,由函数的图象知其在R上递增,无极值点,故选D.2函数y在0,2上的最大值是()ABC0D解析:选A.易知y,x0,2,令y0,得0x1,所以函数y在0,1上单调递增,在(1,2上单调递减,所以y在0,2上的最大。</p><p>4、第3课时导数与函数的综合问题利用导数研究函数的零点(方程根)的问题(高频考点)利用导数研究函数的零点(方程根)的问题,是高考的重点,常出现在解答题的某一问中,难度偏大,主要命题角度有:(1)利用最值(极值)判断零点个数;(2)构造函数法研究零点问题角度一利用最值(极值)判断零点个数已知函数f(x)ax2(1a)xln x(aR。</p><p>5、第1课时导数与函数的单调性基础题组练1函数f(x)exex,xR的单调递增区间是()A(0,)B(,0) C(,1)D(1,)解析:选D.由题意知,f(x)exe,令f(x)0,解得x1,故选D.2函数f(x)1xsin x在(0,2)上的单调情况是()A增函数 B减。</p><p>6、第1课时导数与函数的单调性函数的单调性与导数的关系条件结论函数yf(x)在区间(a,b)上可导f(x)0f(x)在(a,b)内单调递增f(x)0f(x)在(a,b)内单调递减f(x)0f(x)在(a,b)内是常数函数提醒(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)对函数划分单调。</p><p>7、第3课时 导数与函数的综合问题基础达标1(2019台州市高考模拟)已知yf(x)为R上的连续可导函数,且xf(x)f(x)0,则函数g(x)xf(x)1(x0)的零点个数为()A0B1C0或1D无数个解析:选A.因为g(x)xf(x)1(x0),g(x)xf(x)f(x)0,所以g(x)在(0,)上单调递增,因为g(0)1,yf(x)为R上的连续可导函数,所以g(x)为(0,)上的连续可导函数,g(x)g(0)1,所以g(x)在(0,)上无零点2(2019丽水模拟)设函数f(x)ax33x1(xR),若对于任意x1,1,都有f(x)0成立,则实数a的值为________解析:(构造法)若x0,则不论a取何值,f(x)0显然成立;当x0时,即x(0,1时,f(x)ax33x10。</p><p>8、第1课时 导数与函数的单调性基础达标1函数f(x)exex,xR的单调递增区间是()A(0,)B(,0) C(,1)D(1,)解析:选D.由题意知,f(x)exe,令f(x)0,解得x1,故选D.2函数f(x)1xsin x在(0,2)上的单调情况是()A增函数B减函数C先增后减D先减后增解析:选A.在(0,2)上有f(x)1cos x0恒成立,所以f(x)在(0,2)上单调递增3(2019台州市高三期末质量评估)已知函数f(x)ax3ax2x(aR),下列选项中不可能是函数f(x)图象的是()解析:选D.因f(x)ax2ax1,故当a0时,判别式a24a0,其图象是答案C中的那种情形;当a0时,判别式a24a0,其图象是答案B中的那种情形;判。</p><p>9、第二章一元二次方程 第2课时一元二次方程在面积问题和数字问题中的应用 2 5一元二次方程的应用 教学重点 教学难点 应用一元二次方程解决实际问题 从实际问题中建立一元二次方程的模型 2 教学过程 一 创设情境 导入新。</p><p>10、第2课时导数与函数的极值 最值 考点一用导数研究函数的极值 多维探究 命题角度一根据函数图象判断极值 例1 1 设函数f x 在R上可导 其导函数为f x 且函数y 1 x f x 的图象如图所示 则下列结论中一定成立的是 A 函数f。</p>
【在讲数字2时】相关PPT文档
【在讲数字2时】相关DOC文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!