整式的乘除与
课题 单项式与单项式相乘。2.能够熟练地利用法则进行单项式的乘法运算。单项式乘单项式的乘法法则产生的过程及其应用.。2.让学生学会灵活运用法则、乘法公式进行整式的乘除运算。运用法则、乘法公式进行整式的乘除运算和因式分解.。本章的主要内容是整式的乘除运算、乘法公式以及因式分解。整式的乘除运算和因式分解是。
整式的乘除与Tag内容描述:<p>1、整式的乘除与因式分解 1、28 cm接近于( )A珠穆朗玛峰的高度 B三层楼的高度 C姚明的身高 D一张纸的厚度2、下列运算正确的是( ).ABCD3、计算的结果是( ). () (B) (C) (D) 4、1. 计算 ( 1)2 + ( 1)3 = ( ).A. 2 B. 1 C. 0 D. 2 5、化简的结果是( )ABCD 6、下列运算正确的是( )A3a2a23 B(a2)3a5 Ca3a6a9 D(2a)22a27、下列运算正确的是( )A BC D8、下列运算中,正确的是( )ABCD9、下列计算中,结果正确的是( )A B C D 10.下列计算正确的是。</p><p>2、课题两数和(差)的平方【学习目标】1让学生学会推导完全平方公式,并能运用公式进行简单的运算;2体验数学活动充满着探索性和创造性,培养概括能力,体会数形结合的思想【学习重点】完全平方公式的推导及利用完全平方公式进行简单计算【学习难点】理解公式中字母的广泛含义行为提示:创设问题情境导入,激发学生求知欲望知识链接:1.(ab)(mn)amanbmbn2(1)(p1)2p22p1;(2)(m2)2m24m4.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案教会学生落实重点知识链接:1.整式的乘法法则:(1)单项式乘以单项式;(2)单项式乘以。</p><p>3、课题单项式与单项式相乘【学习目标】1在具体情境中理解并掌握单项式乘法的意义;2能够熟练地利用法则进行单项式的乘法运算;3体验探究数学问题的过程,体验转化的思想方法,提升学习的动力源【学习重点】单项式乘单项式的乘法法则产生的过程及其应用【学习难点】理解运算法则及其探索过程行为提示:创设问题情境导入,激发学生的求知欲望引导学生得出该长方体的体积为:4xy3x,继续追问:你会算4xy3x吗?同学们愿意和老师一起来研究这个问题吗?知识链接:1.长方体的体积公式:V长宽高2幂的运算性质行为提示:教会学生看书,独学时对于书。</p><p>4、第12章小结与复习【学习目标】1让学生熟记整式乘除的计算法则、平方差公式和完全平方公式;2让学生学会灵活运用法则、乘法公式进行整式的乘除运算;3让学生能够熟练地利用提公因式法、公式法分解因式【学习重点】运用法则、乘法公式进行整式的乘除运算和因式分解【学习难点】乘法公式与因式分解行为提示:先让学生结合知识结构图独立回忆本章主要知识点,填写知识梳理部分注意:幂的运算的四个公式:同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方要记清楚,不要混淆了注意:1.结果必须是几个整式的积;2结果要分解到每个因式不能再。</p><p>5、第十五章 整式的乘除与因式分解,丰润区丰润镇中学 马海峰,2010年河北省中考数学试题节选,19,一、本章在教材中的地位和作用,人教版义务教育课程标准实验教科书数学第十五章是“整式的乘除与因式分解”。本章的主要内容是整式的乘除运算、乘法公式以及因式分解。本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学。</p><p>6、整式的乘除与因式分解(复习),1、单项式除以单项式 2、多项式除以单项式,(二)整式的除法,你回忆起了吗?就这些知识,1、同底数幂的乘法 2、幂的乘方 3、积的乘方 4、同底数的幂相除 5、单项式乘以单项式 6、单项式乘以多项式 7、多项式乘以多项式 8、平方差公式 9、完全平方公式,(一)整式的乘法,1、同底数幂的乘法,法则:同底数幂相乘,底数不变,指数相加。,数学符号表示:,(其中m、n为正整数),(一)整式的乘法,练习:判断下列各式是否正确。,2、幂的乘方,法则:幂的乘方,底数不变,指数相乘。,数学符号表示:,(其中m、n为正整数。</p><p>7、整式的乘除最经典试题(一)填空题(每小题2分,共计20分)1x10(x3)2_________x12x()24(mn)3(nm)2___________3 x2(x)3(x)2__________4 (2ab)()b24a25 (ab)2(ab)2_____________6 ()2p0_________;41010.2599__________72019()()___________8用科学记数法表示0.0000308___________9(x2y1)(x2y1)2( )2( )2_______________10 若(x5)(x7)x2mxn,则m__________,n________(二)选择题(每小题2分,共计16分)11下列计算中正确的是()(A)ana2。</p><p>8、第12章 整式的乘除,要点梳理,考点讲练,课堂小结,课后作业,小结与复习,1幂的运算法则,要点梳理,amn,amn,anbn,不变,相乘,相加,不变,相乘,乘方,不变,相减,底数,指数,相加,相乘,乘方,相减,amn,注意 (1)其中的a、b代表的不仅可以是单独的数、单独的字母,还可以是一个任意的代数式;(2)这几个法则容易混淆,计算时必须先搞清楚该不该用法则、该用哪个法则 2整式的乘法 单项式与单项式相乘,把它们的 、 分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个 . 单项式与多项式相乘,用 和 的每一项分别相乘,再把所得的积。</p><p>9、整式的乘除与因式分解一、基础知识1、 单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。如:的 系数为,次数为4,单独的一个非零数的次数是0。2、 多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:,项有、1,二次项为、,一次项为,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。3、 整式:单项式和多项式统称整式。注意:凡分母含有字。</p><p>10、为了扩大绿地面积 要把街心花园的一块宽m米 长b米的长方形绿地 向两边分别加宽a米和c米你能用几种方法表示扩大后的面积 不同的表示方法之间有什么关系 ma mb mc m a b c b m a c 整式的乘除和因式分解 问题一种电子。</p>