已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
积分习题课题目及解答积分概念一、有关可积性的练习:我们知道,在区间,ba连续的函数有原函数,并且有牛顿莱布尼茨公式下述定理说明:函数的连续性并不是牛顿莱布尼茨公式成立的必要条件定理:假设)(xf区间,ba可积且有原函数)(xF(注释:在区间,ba可积的函数未必有原函数)则有)()(d)(aFbFxxfba提示:对于区间,ba任意分割bxxxaTn10:注意到niiiniiixFxFxF111)()()(2求证:假设)(xf在,ba可积,则0,存在区间,ba上的阶梯函数)(xg,使得baxxgxfd|)()(|二、求和nnnnnn12)2)(1(1lim(e4)1022dsinlimxxnxn(31)设其它,010,)(nxnxxn10)()(nknnkxxg求极限10d)(limxxgenxn(10d21xex)用极限定义计算10d2xx三、定积分10d)(xxf是和式niiixf1)(的极限,这个定义为定积分的近似计算提供了依据假定积分10d)(xxf存在,则当n时,两个和式:ninnifnS1)1(1和ninnifn1)212(1都趋向于10d)(xxf不过收敛速度有所不同研究下面的问题:假设)(xf在1,0连续,试证11021|d)(|MnSxxfn,21041|d)(|Mnxxfn其中1M和2M是与)(xf有关的正数反常积分一、收敛判别)1(dln1收敛pxxxp,)0(dln0pxxxp(发散),)0(d)1ln(0pxxxp(1p收敛))0(d)11ln(1ppxxx(1p收敛)20dsinlnxx(收敛),20dsinln1xx(发散),032d)4()2(1xxxx(收敛)1d1)cos(lnxxx(发散.换元xtln)1d)21sin1cos1(xxx(收敛,泰勒公式,比阶判别法)二、反常积分计算03d2xexx,(21,换元法)12darctanxxx()4ln(41,分部积分法),022d)1(lnxxxx(0,分部积分计算,或者换元法)三、证明题:()举例说明:axxfd)(收敛未必有0)(limxfx即使非负函数也是如此()求证:如果)(xf在),a非负且一致连续,axxfd)(收敛,则0)(limxfx2求证1dsinxxx收敛,但是12dsinxxx发散.积分习题课题目及解答积分概念定理:假设)(xf区间,ba可积且有原函数)(xF(注释:在区间,ba可积的函数未必有原函数)则有)()(d)(aFbFxxfba证明:对于区间,ba任意分割bxxxaTn10:由微分中值定理得到)()(aFbFniiiniiixFxFxF111)()()(),(1iiixx当分割的直径趋向于零时,等式右端有极限baxxfd)(2求证:假设)(xf在,ba可积,则0,存在区间,ba上的阶梯函数)(xg,使得baxxgxfd|)()(|解:0,由黎曼定理(定理2.1.4)推出,存在0,使得直径任意分割方式,21nxxxT,都有nkkkkxmM1)(今取一个满足直径的确定的分割,21nxxxT。并取阶梯函数),2,1(),)(1nkxxxmxgkkk,则有babaxxgxfxxgxfd)()(d|)()(|nkxxkkkxmxf11d)(nkxxkkkkxmM11d)(二、求和nnnnnn12)2)(1(1lim解:令nSnnnnn12)2)(1(1nnnnn1)1()21)(11(nnnnnnnnSA1)1ln()21ln()11ln(1ln12ln2d)1ln(10xx于是eSnn4lim1022dsinlimxxnxn解:nknknkxxnxxxnx11221022dsindsinnknknkkxxn1122dsinnkkkkttn1)1(22dsin131d110212xxnnkk设其它,010,)(nxnxxn10)()(nknnkxxg求极限10d)(limxxgenxn解:nkxnxnknkxnkxexxge1101d)1(d)(101101d2121d)(d)1(11xeenxxexnkxexnknknnkknknknkk三、定积分10d)(xxf是和式niiixf1)(的极限,这个定义为定积分的近似计算提供了依据假定积分10d)(xxf存在,则当n时,两个和式:ninnifnS1)1(1和ninnifn1)212(1都趋向于10d)(xxf不过收敛速度有所不同研究下面的问题:假设)(xf在1,0连续,试证11021|d)(|MnSxxfn,21041|d)(|Mnxxfn其中1M和2M是与)(xf有关的正数证明:|)1(1d)(|d)(|11101nknknnkfnxxfSxxfn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030第三方支付行业竞争格局与跨境支付机会研究报告
- 2025-2030新能源汽车产业技术革新与商业模式分析研究报告
- 2025-2030新能源动力行业市场发展分析及投资前景趋势报告
- 2025-2030新材料行业技术发展现状分析报告
- 医疗废物处置单位医疗废物管理工作实施方案
- 来广营社区卫生服务中心招聘考试参考试题及答案解析
- 2026广东中山大学肿瘤防治中心中心放疗科陈宝清教授课题组自聘技术员招聘1人考试参考题库及答案解析
- 2026年天津市北辰区妇幼保健计划生育服务中心招聘高层次专业技术人员1人考试备考题库及答案解析
- 2026年中铁四局集团有限公司公开招聘2名考试备考试题及答案解析
- 2026新疆乌市第126中学慈湖初中部急聘初中数学老师考试备考题库及答案解析
- 新疆维吾尔自治区普通高中2026届高二上数学期末监测试题含解析
- 2026年辽宁金融职业学院单招职业技能测试题库附答案解析
- 2026北京海淀初三上学期期末语文试卷和答案
- 2024-2025学年北京市东城区五年级(上)期末语文试题(含答案)
- 人工智能在医疗领域的应用
- 2025年广东省茂名农垦集团公司招聘笔试题库附带答案详解
- 【10篇】新部编五年级上册语文课内外阅读理解专项练习题及答案
- 南京市雨花台区医疗保险管理中心等单位2025年公开招聘编外工作人员备考题库有完整答案详解
- 矿业企业精益管理实施方案与案例
- 2026年共青团中央所属事业单位社会人员公开招聘18人备考题库及答案详解(新)
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库带答案详解
评论
0/150
提交评论