




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.4 课题学习 最短路径问题,.,2,如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?,两点之间,线段最短,.,3,()两点在一条直线异侧,已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。,P,连接AB,线段AB与直线L的交点P ,就是所求。,.,4,思考?为什么这样做就能得到最短距离呢?,根据:两点之间线段最短.,引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问 题现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”,引入新知,问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地到河边什么地方饮马可使他所走的路线全程最短?,探索新知,精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题这个问题后来被称为“将军饮马 问题”你能将这个问题抽象为数学问题吗?,探索新知,追问1这是一个实际问题,你打算首先做什么?,将A,B 两地抽象为两个点,将河l 抽象为一条直 线,探索新知,(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;,探索新知,追问2你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?,探索新知,追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?,(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图),追问1对于问题2,如何将点B“移”到l 的另一侧B处,满足直线l 上的任意一点C,都保持CB 与CB的长度相等?,探索新知,问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,追问2你能利用轴对称的有关知识,找到上问中符合条件的点B吗?,探索新知,问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?,作法:(1)作点B 关于直线l 的对称 点B;(2)连接AB,与直线l 相交 于点C 则点C 即为所求,探索新知,问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,探索新知,问题3你能用所学的知识证明AC +BC最短吗?,证明:如图,在直线l 上任取一点C(与点C 不重合),连接AC,BC,BC 由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC = AC+BC,探索新知,问题3你能用所学的知识证明AC +BC最短吗?,探索新知,问题3你能用所学的知识证明AC +BC最短吗?,证明:在ABC中, ABAC+BC, AC +BCAC+BC即AC +BC 最短,若直线l 上任意一点(与点C 不重合)与A,B 两点的距离和都大于AC +BC,就说明AC + BC 最小,探索新知,追问1证明AC +BC 最短时,为什么要在直线l 上任取一点C(与点C 不重合),证明AC +BC AC+BC?这里的“C”的作用是什么?,探索新知,追问2回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?,.,19,1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直),.,20,我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?,思维火花,各抒己见,1、把A平移到岸边.,2、把B平移到岸边.,3、把桥平移到和A相连.,4、把桥平移到和B相连.,.,21,上述方法都能做到使AM+MN+BN不变吗?请检验.,合作与交流,1、2两种方法改变了.怎样调整呢?,把A或B分别向下或上平移一个桥长,那么怎样确定桥的位置呢?,.,22,问题解决,A1,M,N,如图,平移A到A1,使A1等于河宽,连接A1交河岸于作桥,此时路径最短.,理由;另任作桥,连接,.,由平移性质可知,.,AM+MN+BN转化为,而转化为.,在中,由三角形三边关系知A1N1+BN1A1B,因此 AM+MN+BN,.,23,()一点在两相交直线内部,已知:如图A是锐角MON内部任意一点,在MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.,B,C,D,E,分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小,.,24,()一点在两相交直线内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年安徽省合肥市《考评员》专业技能鉴定考试题库与答案
- 2025年保险代理人资格竞赛试题库(附含答案)
- 2024年道路运输安全员理论及法律知识考试题(附含答案)
- 陕西省西安市雁塔区2024-2025学年八年级下学期期末语文试题(解析版)
- 酶学分析技术试题及答案
- 2025标准企业借款合同范本
- 2025法律法规重点关注:合同条款中的“约定”风险管理 guide
- 2025年关于房屋租赁合同模板
- 2025典当借款合同规范模板
- 摄影专业基础知识培训课件
- 医院防溺水急救培训课件
- 餐饮业员工的培训方案
- 兽医局面试题及答案
- 消化道出血课件
- nginx面试题及答案100道
- 2024西门子消防火灾自动报警及消防联动控制系统产品手册
- 美团BD岗前培训
- 全套课件-计算机基础
- 2025年上半年银行工作总结标准版本(8篇)
- 《杰出店长培训》课件
- 2024年09月2024中国银行中银国际证券股份有限公司校园招聘38人笔试历年参考题库附带答案详解
评论
0/150
提交评论