已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2006 年全国硕士研究生入学考试数学(四)一、填空1 (1)limnn2设函数 在 的某邻域内可导,且 ,则法fx2()21fxfe()f3设函数 可微,且 ,则 在点(1,2)处的全微分()fu1()2fu2(4)zfxy(1,2)|dz4已知 为 2 维列向量,矩阵 , 。若行列式a12(,)Aa12(,)Ba,则 =|6A|B5设矩阵 , 为 2 阶单位矩阵,矩阵 满足 ,则 。1E2AE6设随机变量 与 相互独立,且均服从区间 上的均匀分布,由XY1,3max(,)1Py二、选择7设函数 具有二阶导数,且 , , 为自变量 在点 处()f ()0fx()fxAx0的增量 与 分别为 在点 处对应的增量与微分,若 ,则( )yAdfx0 0(A) (B)0ydA(C) (D )y 08设函数 在 处连续,且 ,则( )()fx020()lim1nf(A) 且 存在 (B) 且 存在ff ()f(0)f(C) 且 存在 (D ) 且 存在(0)() 19设函数 与 在 上连续,且 ,且对任何 ( )fxg0,1()fxg(,1)C(A) (B)1122()()cctdt 122()ccftdgt(C) (D )11()()ccftdgt 11()()ccftdgt10设非齐次线性微分方程 有两个不同的解 , , 为任何()yPxQ1yx2C常数,则该方程通解是( )(A) (B)12()yx112()()C(C) (D )yxyx11设 与 均为可微函数,且 ,已知 是 在约(,)fxy(,)G(,)0G0(,)(,)f束条件 下的一个极值点。下列选择正确的是( )0(A)若 ,则(,)xfy 0(,)yfx(B)若 ,则0 (C)若 ,则(,)xfy0(,)yfx(D)若 ,则012设 为 3 阶矩阵,将 的第 2 行加到第 1 行得 ,再将 的第一列的-1 倍加到第 2AAB列得 ,记 ,则( )C10P(A) (B)1p 1CPA(C) (D )TPT13设 为两个随机事件,且 , 则有( ),B()0P(|)1(A) (B)()(A()APB(C) (C)P(14设随机变量 服从正态分布 ,随机变量 服从正态分布 ,且X21(,)NuY2(,)Nu,则必有( )12|3)|uY(A) (B) (C) (D)2112u12三、解答题15设1sin(,),0arctxyfxyy求:(1) (2)lim(,)ygfx0lim()ygx16计算二重积分 ,其中 是由曲线 , , ,所围成的2DdyD10x平面区域。17证明:当 时,0absin2cossin2cosbbaa18在 坐标平面中,连续曲线 过点 ,其上任意点 处的切线斜xoyL(1,0)M(,)0Pxy率与直线 的斜率之差等于 (常数 )OPxa(1)求 的方程L(2)当 与直线 所围成平面图形的面积为时 ,确定 的值。ya83a19试确定常数 的值,使得 ,其中 是当,ABC23(1)1()xeBCAxO3()x时比 高阶的无穷小。0x320设 4 维向量组 , , ,1(,)Ta2(,2)Ta3(,3)Ta,问 为何值时 线性相关?当 线性相关时,(,)Ta134, 124求其一个极大线性无关组,并将其余量用该极大线性无关组线性表出。21设 3 阶实对称矩阵 A 的各行元素之和均为 3,向量 ,1(,)TI,是线性方程组 的两个解。2(0,1)TI0x(1)求 A 的特征值与特征向量(2)求正交矩阵 和对角矩阵 ,使 ;QATQ(3)求 及 ,其中 为 3 阶单位矩阵。3()2E22设二维随机变量( )的概率分布为,XY其中 为常数,且 的数学期望 , ,记,abcx0.2,0.5PxyZXY求:(1) 的值,(2) 的概率分布Z(3) PX23设随机变量 的概率密度为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川长虹空调有限公司招聘中央空调驻外营销总经理1人笔试考试备考题库及答案解析
- 2025四川蜀道轨道交通集团招聘管培生5人笔试考试备考题库及答案解析
- 2025福建泉州轻工职业学院招聘9人考试笔试模拟试题及答案解析
- 茂县教育局2025年下半年公开考核招聘紧缺学科教师(16人)考试笔试模拟试题及答案解析
- 2025吉林通化市集安市消防救援大队招聘3人笔试考试参考试题及答案解析
- 2025赤水市新合作电子商务有限公司冷水鱼产业项目技术负责人招聘考试笔试备考试题及答案解析
- 2025北京大学医学图书馆招聘1人考试笔试备考题库及答案解析
- 2025山东威海市环翠区羊亭镇招聘专职森林消防应急防火队员1人笔试考试备考试题及答案解析
- 2025首都医科大学附属北京朝阳医院派遣合同制岗位招聘12人(第六次)笔试考试参考题库及答案解析
- 2025广东广州花都城投贸易有限公司第二次招聘项目用工人员2人笔试考试备考题库及答案解析
- 2025安徽合肥水务集团有限公司招聘56人笔试历年参考题库附带答案详解
- 劳动工资统计培训
- 无人机植保服务在现代农业推广分析方案
- 2024年广东省航道事务中心所属事业单位招聘笔试真题
- 2025年江苏省公考《申论》(C卷)题及参考答案
- 6建筑工程的消防专项施工设计方案
- JJF1101-2019环境试验设备温度、湿度校准规范-(高清现行)
- 通达信函数大全整理
- 小升初英语衔接存在的问题及其对策优秀获奖科研论文
- 煤矿矿井废水处理设计方案
- 《数字电路逻辑设计》--逻辑函数及其化简练习习题
评论
0/150
提交评论