生物化学小抄3_第1页
生物化学小抄3_第2页
生物化学小抄3_第3页
生物化学小抄3_第4页
生物化学小抄3_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1生物化学(论述、名解)论述题1、试比较 DNA 和蛋白质的分子组成、分子结构的不同。答:在物质组成上,DNA 是由磷酸、戊糖和碱基组成,其基本单位是单核苷酸,靠磷酸二酯键相互连接而形成多核苷酸链。蛋白质的基本单位是氨基酸,是靠肽链相互连接而形成多肽链。DNA 的一级结构是指多核苷酸链中脱氧核糖核苷酸的排列顺序,蛋白质一级结构是指多肽链中氨基酸残基的排列顺序。DNA 二级结构是由两条反向平行的 DNA 链,按照严格的碱基配对关系形成双螺旋结构,每 10 个 bp 为一圈,螺距为 3.4nm,其结构的维持靠碱基对间形成氢键和碱基对的堆积力维系。蛋白质的二级结构是指一条多肽链进行折叠盘绕,多肽链主链形成的局部构象。其结构形式有 -螺旋、-折叠、-转角和无规则卷曲,其中 -螺旋也是右手螺旋,它是由 3.6 个氨基酸残基为一圈,螺距为0.54nm,蛋白质二级结构维持靠肽键平面上的 C=O 与 N-H 之间形成的氢键。DNA 的三级结构是在二级 结构基础上有组蛋白参与形成的超螺旋结构。蛋白质的三级结构是在二级结构基础上进一步折叠盘绕形成整体的空间构象,部分蛋白质在三级结构的基础上借次级键缔合而构成蛋白质的四级结构。2、 1mol 甘油彻底氧化分解产生多少 mol ATP?请写出反应步骤和计算过程。甘油 + ATP3-磷酸甘油 + ADP; (消耗一个 ATP) 3-磷酸甘油 + NAD+ NADH+H+ + 磷酸二羟丙酮;(1 个NADH=2.5 个 ATP 或 1.5 个 ATP) 3-磷酸甘油醛+ NAD+ Pi1,3-二磷酸甘油酸 + NADH+H+; (1 个 NADH=2.5 个 ATP 或 1.5 个 ATP) 磷酸二羟丙酮3-磷酸甘油醛; 1,3-二磷酸甘油酸+ ADP3- 磷酸甘油酸+ ATP; (生成 1 个ATP) 3-磷酸甘油酸2-磷酸甘油酸磷酸烯醇式丙酮酸; 2磷酸烯醇式丙酮酸+ ADP 丙酮酸 + ATP; (生成 1 个 ATP) 丙酮酸+ NAD+乙酰 CoA + NADH+H+ + CO2(1 个 NADH=2.5个 ATP) 乙酰 CoA 进入三羧酸途径可以产生 10 个 ATP 由此可得出甘油的氧化分解总共可以产生: -1+2.5(1.5)2+2.51+12+10=18.5 个 ATP 或 16.5 个 ATP3、试述短期饥饿时(13 天),机体内糖与脂肪的主要代谢变化。(写出有关代谢途径及其主要反应、关键酶)答:短期饥饿时(13 天),机体内糖的主要代谢表现为糖异生,脂肪的主要代谢表现为脂肪动员、脂肪酸 -氧化。糖异生(以乳酸为例)(1)乳糖经 LDH 催化生成丙酮酸;(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下可在线粒体中直接转变为磷酸烯醇式丙酮酸再进入胞液,也可在胞液中被转变为磷酸烯醇式丙酮酸;(3)磷酸烯醇式丙酮酸2-磷酸甘油酸3-磷酸甘油酸1,3-二磷酸甘油酸3-磷酸甘油醛。 3-磷酸甘油醛与磷酸二羟丙酮反应生成1,6-二磷酸果糖;(4)1,6- 二磷酸果糖经果糖二磷酸酶 -1 催化生成 6-磷酸果糖,再异构为 6-磷酸葡萄糖;( 5)6-磷酸葡萄糖在葡萄糖-6-磷酸酶催化下生成葡萄糖。脂肪动员:甘油三酯在甘油三酯脂肪酶等酯酶的催化下生成游离脂肪酸和甘油。脂肪酸 -氧化:(1)脂肪酸的活化:脂肪酸在脂酰 CoA 合成酶的催化下生成脂酰 CoA。2)脂酰 CoA 进入线粒体:脂酰 CoA 在肉碱脂酰转移酶的作用下进入线粒体。(3)脂酰 CoA-氧化:经过脱氢、加水、再脱氢、硫解全部生成乙酰 CoA。4、试述乳酸异生为葡萄糖的主要反应过程及其主要的酶。 乳酸经 LDH 催化生成丙酮酸;丙酮酸在线粒体内经丙酮酸羧化酶催化催化生成草酰乙酸,后者经 AST 催化生成天冬氨酸出线粒体,在细胞浆中经 AST 催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸;磷酸烯醇式丙酮酸循糖酵解途径逆行至 1,6-二磷酸果糖;1,6- 二磷酸果糖经果3糖二磷酸酶-1 催化生成 F-6-P,再异构为 G-6-P ;G-6-P 在葡萄糖-6-磷酸酶作用下生成葡萄糖5, 试述调节血糖水平的激素有哪些?其作用机理是什么?, 1)升高血糖的激素胰高血糖素:肝糖原分解、糖异生增加、加速脂肪动员; 糖皮质激素:糖异生增加、抑制肝外组织摄取利用 G;肾上腺素:加速糖原分解 2)降低血糖的激素 胰岛素:促进 G 利用,促进糖原合成,加快 G 氧化,抑制糖异生,脂肪动员减慢。6, 试述四种血浆脂蛋白的化学组成特点、合成部位及主要生理功能7, 试述影响氧化磷酸化的诸因素及其作用机制。答: 影响氧化磷酸化的因素及机制:呼吸链抑制剂:鱼藤酮、粉蝶霉素 A、异戊巴比妥与复合体 中的铁硫蛋白结合,抑制电子传递;抗霉素 A、二硫基丙醇抑制复合体 ;一氧化碳、氰化物、硫化氢抑制复合体。解偶联剂:二硫基苯酚和存在于棕色脂肪组织、骨骼肌等组织线粒体内膜上的解偶联蛋白可使氧化磷酸化解偶联。氧化磷酸化抑制剂:寡霉素可与寡霉素敏感蛋白结合,阻止质子从 FO 质子通道回流,抑制磷酸化并间接抑制电子呼吸链传递。ADP 的调节作用:ADP 浓度升高,氧化磷酸化速度加快,反之,氧化磷酸化速度减慢。甲状腺素:诱导细胞膜 Na+_K+_ATP 酶生成,加速 ATP 分解为 ADP,促进氧化磷酸化;增加解偶联蛋白的基因表达导致耗氧产能均增加。线粒体 DNA 突变:呼吸链中的部分蛋白质肽链由线粒体 DNA 编码,线粒体 DNA 因缺乏蛋白质保护和损伤修复系统易发生突变,影响氧化磷酸化。8、简述丙氨酸-葡萄糖循环过程及生理意义。4答:肌肉中的氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运往肝;在肝中,丙氨酸通过联合脱氨基作用,生成丙酮酸,并释放氨;氨用于合成尿素,丙酮酸经糖异生途径生成葡萄糖;葡萄糖由血液运往肌肉,沿糖降解途径转变成丙酮酸,后者再接受氨基生成丙氨酸。意义:肌肉中的氨以无毒的丙氨酸形式运往肝,同时,肝又为肌肉提供了生成丙酮酸的葡萄糖。9、鸟氨酸循环合成尿素的过程。(要求写出主要步骤、合成部位、关键酶、消耗 ATP 的步骤)答:鸟氨酸循环包括:氨基甲酰磷酸的合成,在线粒体中进行,消耗 ATP;氨基甲酰磷酸和鸟氨酸生产瓜氨酸,在线粒体中进行;瓜氨酸和天冬氨酸合成精氨酸代琥珀酸,在胞液中进行,催化此步反应的酶为精氨酸代琥珀酸合成酶为尿素合成的关键酶,消耗ATP;精氨酸代琥珀酸裂解为精氨酸和延胡索酸,在胞液中进行;精氨酸水解为尿素和鸟氨酸,在胞液中进行。10、从蛋白质、氨基酸代谢角度分析严重肝功能障碍时肝昏迷的成因。答:严重肝功能障碍时,肝脏尿素合成功能不足,导致血氨升高,氨进入脑组织可与脑组织中 -酮戊二酸结合生成谷氨酸,并可进一步生成谷氨酰胺,引起脑组织中 -酮戊二酸减少、三羧酸循环减弱,使 ATP 生成减少,脑功能发生障碍,导致肝昏迷。此外,肠道蛋白质腐败产物吸收后因不能在肝脏有效解毒、处理也成为肝昏迷的成因之一,尤其是酪胺和苯乙胺,因肝功能障碍未分解而进入脑组织,可分别羟化后形成 -羟酪胺和苯乙醇胺,因与儿茶酚胺相似,称假神经递质,可取代正常神经递质儿茶酚胺但不能传导神经冲动,引起大脑异常抑制,导致肝昏迷。11、氨基酸脱氨基的方式有哪些及各举例说明。答:(1)氧化脱氨基作用:谷氨酸在谷氨酸脱氢酶的作用下脱氨(2)转氨基作用:如在谷丙转氨酶的作用下将谷氨酸上的氨基转给丙酮酸生成相应的丙氨酸和 -酮戊二酸(3)联合脱氨基作用:转氨酶和谷氨酸脱氢酶联合作用脱去氨基酸上的氨基(4)嘌呤核苷酸循环:首先氨基酸通过连续的转氨基作用,5将氨基转移给草酰乙酸,生成天冬氨酸。天冬氨酸与 IMP 反应生成腺苷酸代琥珀酸。腺苷酸代琥珀酸裂解出延胡索酸和AMP。AMP 脱氨基生成 IMP。12、简述体内氨基酸代谢状况。答:分布于体内各处的氨基酸共同构成氨基酸代谢库。氨基酸有三个来源:(1)食物蛋白质消化吸收的氨基酸。(2)体内组织蛋白质分解产生的氨基酸。(3)体内合成的非必需氨基酸。氨基酸有四个代谢去路:(1)脱氨基作用生成 -酮酸和氨,氨主要在肝脏生成尿素排泄,-酮酸可在体内生成糖、酮体或氧化供能,此是氨基酸分解代谢的主要去路。(2)脱羧基作用生成CO2 和胺,许多胺类是生物活性物质如 -氨基丁酸、组织胺等。(3)生成其他含氮物如嘌呤、嘧啶等。(4)合成蛋白质,以 20种氨基酸为基本组成单位,在基因遗传信息的指导下合成组织蛋白质,发挥各种生理功能。13、阐述 DNA 半保留复制及实验依据答:DNA 生物合成时,母链 DNA 解开为两股单链,各自作为模板按碱基配对规律,合成与模板互补的子链。子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全重新合成,两个子细胞的 DNA 都和亲代 DNA 碱基序列一致,这种复制方式称为半保留复制。实验依据:Messelson 和 Stahl 的实验,把含 15NH4CL 的培养液中培养。细菌在营养条件下,生长新一代,提取子一代的 DNA 再作密度梯度离心分析,发现其致密带介乎重带与普通带之间。14、简述信号假说机制。答:这一假说认为,分泌性蛋白初级产物的 N-端有信号肽结构。在分泌性蛋白合成中,信号肽一出现,就被信号肽识别粒子辨认并结合,将正在合成蛋白质的核蛋白体带到细胞膜的内侧面,信号肽识别粒子与其受体对接蛋白结合,促使膜蛋白通道开放,信号肽带动合成中的蛋白质沿通道穿过膜,信号肽在沿通道折回膜内时,被位于膜外侧的信号肽酶在加工区切断,使成熟的蛋白质释放到细胞外。 615、详述胆红素分解代谢过程答:胆红素在血中以胆红素-清蛋白复合体的形式运输,到肝内与双葡萄糖醛酸结合为结合胆红素,随胆汁进入肠道,生成胆素原。大部分生成尿胆素和粪胆素随尿液和粪排出,10%-20%的胆素原可被肠黏膜细胞重吸收,经门静脉入肝。其中大部分再随胆汁排入肠道,形成胆素原的肠肝循环。名词解释1、 肽(peptide):是氨基酸之间脱水,靠肽键连接而成的化合物。2、肽键:是一个氨基酸 -羧基与另一个氨基酸 -氨基脱水形成的键,也称为酰胺键。3、 肽单元:参与肽键的 6 个原子 C1、C、O、N、H 、C2 在同一平面上,构成了所谓的肽单元。4、 -螺旋:多肽链的主链围绕中心轴有规律的螺旋式上升,每3.6 个氨基酸残基盘绕一周,形成的右手螺旋 ,称为 -螺旋。5、 模体:二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,称为模体6、 结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域 7、 亚基:有些蛋白质分子中含有两条或两条以上具有三级结构的多肽链组成蛋白质的四级结构,才能完整的表现出生物活性,其中每个具有三级结构的多肽链单位称为蛋白质的亚基。8、 蛋白质等电点:当蛋白质溶液处于某一 pH 值时,其分子解离成正负离子的趋势相等成为兼性离子,此时该溶液的 pH 值称为该蛋白质的等电点。9、 蛋白质的变性:在某些理化因素的作用下,使蛋白质严格的空间结构受到破坏,导致理化性质改变和生物学活性丧失称为蛋白质的变性。710、 电泳: 带电粒子在电场的作用下,向它所带的电荷相反方向泳动的现象称为电泳。11、 双缩脲反应:是指蛋白质和多肽分子中肽键在稀碱溶液中与硫酸铜共热产生紫红色络合物的反应,称为双缩脲反应。12、 核酸:许多单核苷酸通过磷酸二酯键连接而成的高分子化合物,称为核酸。13、 稀有碱基:核酸分子中除常见的 A、G 、C 、U 和 T 等碱基外,还含有微量的不常见的其它碱基,这些碱基称为稀有碱基。14、 碱基对:核酸分子中腺嘌呤与胸腺嘧啶、鸟嘌呤与胞密啶总是通过氢键相连形成固定的碱基配对关系,因此称为碱基对,也称为碱基互补。15、 核酸的变性: 在某些理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,理化性质改变,失去原有的生物学活性既称为核酸变性。16、 Tm 值: DNA 在加热变性过程中,紫外吸收值达到最大值的 50%时的温度称为核酸的变性温度或解链温度,用 Tm 表示。17、 DNA 复性:热变性的 DNA 溶液经缓慢冷却,使原来两条彼此分离的 DNA 链重新缔合,形成双螺旋结构,这个过程称为DNA 的复性。18、 核酸的杂交:不同来源的 DNA 单链与 DNA 或 RNA 链彼此可有互补的碱基顺序,可通过变性、复性以形成局部双链,即所谓杂化双链,这个过程称为核酸的杂交。19、 酶:酶是由活细胞合成对特异的底物起高效催化作用的蛋白质。是体内催化各种代谢反应最主要的催化剂。20、 同工酶: 同工酶是指催化相同的化学反应,但酶蛋白的分子结构、理化性质乃至免疫学特性不同的一组酶。同工酶存在同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中。在代谢中起重要作用.21、 酶的特异性:酶对催化的底物有较严格的选择性,即一种酶仅作用于一种或一类化合物或一定的化学键,催化一定的化学反应生成一定的产物。酶的这种特性称酶的特异性。822、 酶的活性中心:必需基团在空间上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合转化为产物,这一区域称为酶的活性中心。23、 酶原及酶原激活:有些酶在细胞内合成或初分泌时只是酶的无活性前体称酶原。在一定条件下转变成有活性的酶的过程称酶原的激活,酶原的激活实际上是酶活性中心形成和暴露的过程。24、诱导契合假说:酶在与底物相互接近时,其结构相互诱导、相互变形和相互适应,近而相互结合。这一过程称酶底物诱导契合学说。25、 Km 值:Km 值是当反应速度等于最大速度一半时的底物浓度。单位:mmoL / L 。26、 最适温度:酶是生物催化剂,温度对酶促反应速度有双重影响。酶促反应速度最快时的环境温度称酶的最适温度。27、 最适 pH: 在某一 pH 时,酶、底物、辅酶的解离状态最适合相互结合及催化反应,反应速度最大。此 pH 称为酶的最适 pH 。28、 可逆性抑制:抑制剂与酶以非共价键结合,使酶活力降低或丧失,用简单透析或过滤的方法去除抑制剂,酶的活力得以恢复。这种抑制称可逆性抑制。29、 激活剂:使酶从无活性变为有活性或使酶活性增加的物质称酶的激活剂。大多数为金属离子,少数为阴离子。也有许多有机化合物激活剂。30、 核酶:是具有高效、特异催化作用的核酸,是近年来发现的一类新的生物催化剂,其作用主要参与 RNA 的剪接。31、 酶的 Vmax: 在一定 pH、温度和离子强度的条件下,酶完全被底物饱和时所得到的速度为酶的最大反应速度。32、 结合酶:结合酶由酶蛋白和非蛋白的辅助因子组成,二者形成的复合物又称其为全酶,全酶才有催化活性。33、 糖酵解(glycolysis): 缺氧情况下,葡萄糖分解生成乳酸的过程称之为糖酵解。934、 糖的有氧氧化:葡萄糖在有氧条件下彻底氧化生成 CO2 和H2O 的反应过程称为有氧氧化。35、 磷酸戊糖途径:6-磷酸葡萄糖经氧化反应和一系列基团转移反应,生成 CO2、NADPH、磷酸核糖、 6-磷酸果糖和 3-磷酸甘油醛而进入糖酵解途径称为磷酸戊糖途径(或称磷酸戊糖旁路)。36、 糖异生: 由非糖物质乳酸、甘油、氨基酸等转变为葡萄糖或糖原的过程称为糖异生。37、 糖原的合成与分解: 由单糖(葡萄糖、果糖、半乳糖等)合成糖原的过程称为糖原的合成。由糖原分解为 1-磷酸葡萄糖、6-磷酸葡萄糖、最后为葡萄糖的过程称为糖原的分解。38、 三羧酸循环(krebs 循环):由草酰乙酸和乙酰 CoA 缩合成柠檬酸开始,经反复脱氢、脱羧再生成草酰乙酸的循环反应过程称为三羧酸循环。由于 Krebs 正式提出三羧酸循环,故此循环又称 Krebs 循环。39、 巴斯德效应 (Pastuer 效应:有氧氧化抑制糖酵解的现象产物巴斯德效应(Pasteur effect )。40、 丙酮酸羧化支路:丙酮酸在丙酮酸羧化酶催化下生成草酰乙酸,后经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸的过程称为丙酮酸羧化之路。41、 乳酸循环(coris 循环):肌肉收缩时经酵解产生乳酸,通过血液运输至肝,在肝脏异生成葡萄糖进入血液,又可被肌肉摄取利用称为乳酸循环。也叫 Cori 循环。42、 三碳途径:葡萄糖先分解成丙酮酸、乳酸等三碳化合物,再运往肝脏,在肝脏异生为糖原称为三碳途径或称合成糖原的简接途径。43、 糖原累积症, 由于先天性缺乏与糖原代谢有关的酶类:使体内某些器官、组织中大量糖原堆积而引起的一类遗传性疾病,称糖原累积症。44、 血糖 (blood sugar) :血液中的葡萄糖称为血糖,其正常值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论