




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
XX 年考研数学大纲专家解读资料XX 年与 XX 年考研数学大纲变化对比:数农 章节 XX 年农学门类联考数学考查范围 XX 年农学门类联考数学考查范围 变化对比 线性代数 一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1了解行列式的概念,掌握行列式的性质2会应用行列式的性质和行列式按行(列)展开定理计算行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1了解行列式的概念,掌握行列式的性质2会应用行列式的性质和行列式按行(列)展开定理计算行列式 对比:无变化二、矩阵 考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵4了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵4了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 对比:无变化矩阵是数学中重要的基本概念之一,本章要求在理解矩阵相关概念的基础上,掌握矩阵的运算,由于篇幅所限,本章重难考点的深度解析与可命题角度详见XX 年全国硕士研究生入学统一考试数学考试大纲配套强化指导第二部分,第二篇。三、向量 考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系考试要求1了解向量的概念,掌握向量的加法和数乘运算法则2理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩4了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系 考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系考试要求1了解向量的概念,掌握向量的加法和数乘运算法则2理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩4了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系 对比:无变化向量是线性代数的核心内容之一,本章要求在理解线性相关性的基础上,掌握判断向量线性相关性的各中方法,与此同时本章其它重难考点的深度解析与可命题角度详见XX 年全国硕士研究生入学统一考试数学考试大纲配套强化指导第二部分,第二篇。四、线性方程组 考试内容线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系 非齐次线性方程组的通解考试要求1会用克莱姆法则解线性方程组2掌握非齐次线性方程组有解和无解的判定方法3理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4了解非齐次线性方程组解的结构及通解的概念5掌握用初等行变换求解线性方程组的方法 考试内容线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系 非齐次线性方程组的通解考试要求1会用克莱姆法则解线性方程组2掌握非齐次线性方程组有解和无解的判定方法3理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4了解非齐次线性方程组的结构及通解的概念5掌握用初等行变换求解线性方程组的方法 对比:无变化五、矩阵的特征值和特征向量 考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵3了解实对称矩阵的特征值和特征向量的性质 考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵3了解实对称矩阵的特征值和特征向量的性质 对比:无变化XX 年与 XX 年考研数学大纲变化对比:数农 章节 XX 年农学门类联考数学考查范围 XX 年农学门类联考数学考查范围 变化对比 线性代数 一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1了解行列式的概念,掌握行列式的性质2会应用行列式的性质和行列式按行(列)展开定理计算行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1了解行列式的概念,掌握行列式的性质2会应用行列式的性质和行列式按行(列)展开定理计算行列式 对比:无变化二、矩阵 考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵4了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵4了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 对比:无变化矩阵是数学中重要的基本概念之一,本章要求在理解矩阵相关概念的基础上,掌握矩阵的运算,由于篇幅所限,本章重难考点的深度解析与可命题角度详见XX 年全国硕士研究生入学统一考试数学考试大纲配套强化指导第二部分,第二篇。三、向量 考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系考试要求1了解向量的概念,掌握向量的加法和数乘运算法则2理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩4了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系 考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系考试要求1了解向量的概念,掌握向量的加法和数乘运算法则2理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩4了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系 对比:无变化向量是线性代数的核心内容之一,本章要求在理解线性相关性的基础上,掌握判断向量线性相关性的各中方法,与此同时本章其它重难考点的深度解析与可命题角度详见XX 年全国硕士研究生入学统一考试数学考试大纲配套强化指导第二部分,第二篇。四、线性方程组 考试内容线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系 非齐次线性方程组的通解考试要求1会用克莱姆法则解线性方程组2掌握非齐次线性方程组有解和无解的判定方法3理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4了解非齐次线性方程组解的结构及通解的概念5掌握用初等行变换求解线性方程组的方法 考试内容线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系 非齐次线性方程组的通解考试要求1会用克莱姆法则解线性方程组2掌握非齐次线性方程组有解和无解的判定方法3理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4了解非齐次线性方程组的结构及通解的概念5掌握用初等行变换求解线性方程组的方法 对比:无变化五、矩阵的特征值和特征向量 考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵3了解实对称矩阵的特征值和特征向量的性质 考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵3了解实对称矩阵的特征值和特征向量的性质 对比:无变化XX 年与 XX 年考研数学大纲变化对比:数农 章节 XX 年农学门类联考数学考查范围 XX 年农学门类联考数学考查范围 变化对比 线性代数 一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1了解行列式的概念,掌握行列式的性质2会应用行列式的性质和行列式按行(列)展开定理计算行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1了解行列式的概念,掌握行列式的性质2会应用行列式的性质和行列式按行(列)展开定理计算行列式 对比:无变化二、矩阵 考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵4了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵4了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 对比:无变化矩阵是数学中重要的基本概念之一,本章要求在理解矩阵相关概念的基础上,掌握矩阵的运算,由于篇幅所限,本章重难考点的深度解析与可命题角度详见XX 年全国硕士研究生入学统一考试数学考试大纲配套强化指导第二部分,第二篇。三、向量 考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系考试要求1了解向量的概念,掌握向量的加法和数乘运算法则2理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩4了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系 考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系考试要求1了解向量的概念,掌握向量的加法和数乘运算法则2理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩4了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系 对比:无变化向量是线性代数的核心内容之一,本章要求在理解线性相关性的基础上,掌握判断向量线性相关性的各中方法,与此同时本章其它重难考点的深度解析与可命题角度详见XX 年全国硕士研究生入学统一考试数学考试大纲配套强化指导第二部分,第二篇。四、线性方程组 考试内容线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系 非齐次线性方程组的通解考试要求1会用克莱姆法则解线性方程组2掌握非齐次线性方程组有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《开学第一课》观后感写作指导附范文
- 电瓶车上路知识培训总结课件
- 北京通州流管员考试题及答案
- Zotepine-d6-生命科学试剂-MCE
- 北大物理卓越考试试题及答案
- 康熙元年考试题目及答案
- 乐谱制作考试题及答案
- 电热保险丝知识培训内容课件
- 保定初中中考考试题型及答案
- 蚌埠市科目一考试试卷及答案
- 核电站主要材料质量保证措施
- (2025年标准)挖桩孔协议书
- 浪浪山携志奔赴新学期-2025年秋季开学第一课主题教育班会-2025-2026学年初中主题班会
- 2025版集团内部无息借款资金调度与管理合同范本
- 管道吊装方案范本
- 黑龙江省五大连池市2025年上半年事业单位公开招聘试题含答案分析
- 小学英语课堂教学规范操作手册
- 人事经理工作汇报
- 项目实施进程汇报
- 2025学宪法讲宪法知识竞赛题库及答案(小学组)
- 中小企业网络安全解决方案概述
评论
0/150
提交评论