




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
乘法算式是否要区分“被乘数”和“乘数”?乘法算式是否要区分“被乘数”和“乘数”?根据义务教育数学课程标准 ,本套教材中没有刻意区分乘数和被乘数。算式, “46”既可以表示 6 个 4 相加,又可以表示 4 个 6 相加,即在不涉及具体问题情境下,可以代表两个意义。466+6+6+6 或 46=4+4+4+4+4+4 都是对的。反过来,6+6+6+6 既可以写成 46,也可以写成64。反之,6 个 4(或 4 个 6)相加既可以用46 表示,也可以用 64 表示。也就是一种意义可以用二种方式表示。但在具体应用问题的情境中,不同的算式有时表示不同的含义,比如“有 6 个小朋友,每人有 4 支铅笔,一共有多少支铅笔?” ,46 只代表 6 个 4 相加,当然这个实际问题也可以列出算式“64” 。在解决实际问题教学过程时,教师要注意让学生理解各个数的意义,鼓励他们用自己的语言表达算式的具体含义,但列成算式不要区分“被乘数”和“乘数”的,即不要强调“被乘数”和“乘数”书写位置上的人为规定。同样,在分数乘法的内容中,教材也不区分乘数的位置,处理的方法和整数是一样的,也就是说分数乘整数不但可以表示几个相同分数的和,还可以表示一个数的几分之几是多少。教材进行这样的处理在数学中是没有问题的,同时为了减少了学生在学习中的“人为”障碍。学生在学习乘法时最重要的是体会乘法的意义,由于过分强调“被乘数”和“乘数”的区别,一是使学生将主要精力放在了这种区分上,而可能造成对乘法的意义学习的忽略;二是,区分二者一直是学生学习中的难点,加重了学生不必要的负担,很多学生能够在具体情境中运用乘法正确地解决问题,而就是因为“被乘数”和“乘数”的顺序问题而导致“出错” ,造成了自信心的挫伤。在运算教学中,教师要让学生经历从实际情境中抽象出运算的过程,要关注学生对运算意义的理解过程。教师要帮助学生建立实际问题与数学运算的内在联系,使学生在对实际问题的解决中,产生直觉经验,找到数的运算的现实背景,促进学生理解运算的含义及其性质,并能自觉地运用于解决应用问题之中。在教材中,无论是对于“乘法”的学习还是其他运算的学习,都十分重视强化学生对运算意义的理解。在“乘法”单元中第一节课安排了“数一数与乘法”的内容,使学生在大量实例的基础上,体会学习乘法的必要性、乘法的意义以及乘法与日常生活的密切联系。因此,无论是运算教学还是相关内容的评价,都应以此为重点,评价中如果能结合具体的问题情境或者图示考察学生对乘法意义的理解就更好了,而不仅仅是单纯地对抽象算式进行判断。特别是“31/5 和 1/53 的意义、算法、结果是否相同”这样的题目,我们认为不是一个好题目。但是目前市场上有一些练习册,由于不了解我们的编写理念,会出现这类题目,建议教师给予正确的指导,不要让学生在区分这些问题上浪费太多的时间。在回答这个问题的同时,笔者看到了上海市浦东新区教育学院曹培英老师的一篇文章关于乘法运算意义与乘法交换律的教学处理 ,很受启发。文章在最后谈到的一段文字非常有道理,特摘录部分内容与大家分享:事实上,面对用情景图或文字表达的实际问题,学生一般都能分清 64 或 46 中的 6 表示每袋 6 只桔子,4 表示有 4 袋。但再进一步要求学生概括:“这是求 4 个 6,而不是求 6 个 4”,就会有学生感到困难。于是,为了帮助这些学生,引进了各种各样的练习(包括所谓的“文字题” ) ,越练越“玄” ,越练要求越高以往教学中,教学要求把握失当,也是造成或者说扩大“人为教学障碍”的重要因素之一。因此,正确定位“乘法初步认识”的教学目标,是解决问题的一条配套措施。否则,即使从一开始就让学生认识乘法的可交换性,并取消书写位置的限制,仍会存在“人为的教学障碍” 。乘法算式是否要区分“被乘数”和“乘数”?根据义务教育数学课程标准 ,本套教材中没有刻意区分乘数和被乘数。算式, “46”既可以表示 6 个 4 相加,又可以表示 4 个 6 相加,即在不涉及具体问题情境下,可以代表两个意义。466+6+6+6 或 46=4+4+4+4+4+4 都是对的。反过来,6+6+6+6 既可以写成 46,也可以写成64。反之,6 个 4(或 4 个 6)相加既可以用46 表示,也可以用 64 表示。也就是一种意义可以用二种方式表示。但在具体应用问题的情境中,不同的算式有时表示不同的含义,比如“有 6 个小朋友,每人有 4 支铅笔,一共有多少支铅笔?” ,46 只代表 6 个 4 相加,当然这个实际问题也可以列出算式“64” 。在解决实际问题教学过程时,教师要注意让学生理解各个数的意义,鼓励他们用自己的语言表达算式的具体含义,但列成算式不要区分“被乘数”和“乘数”的,即不要强调“被乘数”和“乘数”书写位置上的人为规定。同样,在分数乘法的内容中,教材也不区分乘数的位置,处理的方法和整数是一样的,也就是说分数乘整数不但可以表示几个相同分数的和,还可以表示一个数的几分之几是多少。教材进行这样的处理在数学中是没有问题的,同时为了减少了学生在学习中的“人为”障碍。学生在学习乘法时最重要的是体会乘法的意义,由于过分强调“被乘数”和“乘数”的区别,一是使学生将主要精力放在了这种区分上,而可能造成对乘法的意义学习的忽略;二是,区分二者一直是学生学习中的难点,加重了学生不必要的负担,很多学生能够在具体情境中运用乘法正确地解决问题,而就是因为“被乘数”和“乘数”的顺序问题而导致“出错” ,造成了自信心的挫伤。在运算教学中,教师要让学生经历从实际情境中抽象出运算的过程,要关注学生对运算意义的理解过程。教师要帮助学生建立实际问题与数学运算的内在联系,使学生在对实际问题的解决中,产生直觉经验,找到数的运算的现实背景,促进学生理解运算的含义及其性质,并能自觉地运用于解决应用问题之中。在教材中,无论是对于“乘法”的学习还是其他运算的学习,都十分重视强化学生对运算意义的理解。在“乘法”单元中第一节课安排了“数一数与乘法”的内容,使学生在大量实例的基础上,体会学习乘法的必要性、乘法的意义以及乘法与日常生活的密切联系。因此,无论是运算教学还是相关内容的评价,都应以此为重点,评价中如果能结合具体的问题情境或者图示考察学生对乘法意义的理解就更好了,而不仅仅是单纯地对抽象算式进行判断。特别是“31/5 和 1/53 的意义、算法、结果是否相同”这样的题目,我们认为不是一个好题目。但是目前市场上有一些练习册,由于不了解我们的编写理念,会出现这类题目,建议教师给予正确的指导,不要让学生在区分这些问题上浪费太多的时间。在回答这个问题的同时,笔者看到了上海市浦东新区教育学院曹培英老师的一篇文章关于乘法运算意义与乘法交换律的教学处理 ,很受启发。文章在最后谈到的一段文字非常有道理,特摘录部分内容与大家分享:事实上,面对用情景图或文字表达的实际问题,学生一般都能分清 64 或 46 中的 6 表示每袋 6 只桔子,4 表示有 4 袋。但再进一步要求学生概括:“这是求 4 个 6,而不是求 6 个 4”,就会有学生感到困难。于是,为了帮助这些学生,引进了各种各样的练习(包括所谓的“文字题” ) ,越练越“玄” ,越练要求越高以往教学中,教学要求把握失当,也是造成或者说扩大“人为教学障碍”的重要因素之一。因此,正确定位“乘法初步认识”的教学目标,是解决问题的一条配套措施。否则,即使从一开始就让学生认识乘法的可交换性,并取消书写位置的限制,仍会存在“人为的教学障碍” 。乘法算式是否要区分“被乘数”和“乘数”?根据义务教育数学课程标准 ,本套教材中没有刻意区分乘数和被乘数。算式, “46”既可以表示 6 个 4 相加,又可以表示 4 个 6 相加,即在不涉及具体问题情境下,可以代表两个意义。466+6+6+6 或 46=4+4+4+4+4+4 都是对的。反过来,6+6+6+6 既可以写成 46,也可以写成64。反之,6 个 4(或 4 个 6)相加既可以用46 表示,也可以用 64 表示。也就是一种意义可以用二种方式表示。但在具体应用问题的情境中,不同的算式有时表示不同的含义,比如“有 6 个小朋友,每人有 4 支铅笔,一共有多少支铅笔?” ,46 只代表 6 个 4 相加,当然这个实际问题也可以列出算式“64” 。在解决实际问题教学过程时,教师要注意让学生理解各个数的意义,鼓励他们用自己的语言表达算式的具体含义,但列成算式不要区分“被乘数”和“乘数”的,即不要强调“被乘数”和“乘数”书写位置上的人为规定。同样,在分数乘法的内容中,教材也不区分乘数的位置,处理的方法和整数是一样的,也就是说分数乘整数不但可以表示几个相同分数的和,还可以表示一个数的几分之几是多少。教材进行这样的处理在数学中是没有问题的,同时为了减少了学生在学习中的“人为”障碍。学生在学习乘法时最重要的是体会乘法的意义,由于过分强调“被乘数”和“乘数”的区别,一是使学生将主要精力放在了这种区分上,而可能造成对乘法的意义学习的忽略;二是,区分二者一直是学生学习中的难点,加重了学生不必要的负担,很多学生能够在具体情境中运用乘法正确地解决问题,而就是因为“被乘数”和“乘数”的顺序问题而导致“出错” ,造成了自信心的挫伤。在运算教学中,教师要让学生经历从实际情境中抽象出运算的过程,要关注学生对运算意义的理解过程。教师要帮助学生建立实际问题与数学运算的内在联系,使学生在对实际问题的解决中,产生直觉经验,找到数的运算的现实背景,促进学生理解运算的含义及其性质,并能自觉地运用于解决应用问题之中。在教材中,无论是对于“乘法”的学习还是其他运算的学习,都十分重视强化学生对运算意义的理解。在“乘法”单元中第一节课安排了“数一数与乘法”的内容,使学生在大量实例的基础上,体会学习乘法的必要性、乘法的意义以及乘法与日常生活的密切联系。因此,无论是运算教学还是相关内容的评价,都应以此为重点,评价中如果能结合具体的问题情境或者图示考察学生对乘法意义的理解就更好了,而不仅仅是单纯地对抽象算式进行判断。特别是“31/5 和 1/53 的意义、算法、结果是否相同”这样的题目,我们认为不是一个好题目。但是目前市场上有一些练习册,由于不了解我们的编写理念,会出现这类题目,建议教师给予正确的指导,不要让学生在区分这些问题上浪费太多的时间。在回答这个问题的同时,笔者看到了上海市浦东新区教育学院曹培英老师的一篇文章关于乘法运算意义与乘法交换律的教学处理 ,很受启发。文章在最后谈到的一段文字非常有道理,特摘录部分内容与大家分享:事实上,面对用情景图或文字表达的实际问题,学生一般都能分清 64 或 46 中的 6 表示每袋 6 只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 测绘保密考试题库及答案
- 北京市门头沟区2023-2024学年八年级上学期期中考试道德与法制考题及答案
- 北京市朝阳区2023-2024学年七年级上学期期末质量监测数学试卷及答案
- 心理反转测试题目及答案
- 校务办面试题目及答案
- 观后感复兴之路观后感二450字(10篇)
- 业务代理授权合同
- 诗歌与散文鉴赏能力培养方案
- 人教版七年级下册二单元作文母亲河抒怀11篇
- 时尚的鸭子哦课件
- 通信技术未来发展趋势
- 整形美容外科进修汇报
- 立达RSBD并条机培训资料讲课文档
- 2025年幼儿园膳食工作计划
- 茶与健康养生课程课件
- 2025车位包销合同
- 心绞痛健康宣教课件
- 奥尔夫音乐教师培训课件
- 胃肠减压技术及并发症
- 2025年山东省中考道德与法治试卷真题及答案详解(精校打印版)
- 幼儿园防蚊虫健康活动
评论
0/150
提交评论