步进电机伺服系统控制_第1页
步进电机伺服系统控制_第2页
步进电机伺服系统控制_第3页
步进电机伺服系统控制_第4页
步进电机伺服系统控制_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

步进电机和伺服电机的系统控制 只要有软件的支持,这里将不再有猜测性的工作。 运动的控制者-软件:只要有了软件,它可以帮助我们配置改装、诊断故障、 调试程序等。 数控电动机的设计者会是一个微软窗口基于构件的软件开发工具, 可以为 6000 系列产品设置代码,同时可以控制设计者与执行者的运动节目,并创造 一个定制运营商的测试小组。运动建筑师的心脏是一个空壳,它可以为进入以下模 块提供一个综合环境。 1. 系统配置这个模块提示您填写所有相关初成立信息启动议案。配置向具体 6000 系列产品的选择,然后这些信息将用于产生实际的 6000 - 语言代码,这 是你的开始计划。 2. 程序编辑器允许你编辑代码。它也有可行的“帮助”命令菜单。A 用户指 南提供了相关的磁盘指南。 3. 终端模拟器本模块,可让您直接与 6000 系列产品互动。他所提供的“帮 助”是再次参考所有命令和定义。 4. 测试小组你可以使用本模块,模拟程序,调试程序,并跟踪检测程序。 由于它的对话窗口,你能很容易的知道怎么使用它。 运动建筑师已经将所有的 6000 系列产品都运用在了步进电机和伺服电机的技术 上。由于丰富的对话窗口和 6000 系列语言,使得你能够从简单到复杂的解决问题。 运动建筑师的 6000 系列产品的标准配置工具,能够使得这些控制器更加简单, 相当大的缩短项目开发时间。它的另外一个增值特点是使用 6000 伺服控制器的调 谐助手。 基于调谐价值观, 这个额外的模块可以以图形化的方式为你展示各种参数。 看看这些参数是如何让变化的。用运动的建筑师,你可以一次性打开多个窗口。举 例来说,无论是程序编辑器和终端模拟器窗口,你都可以打开运行程序, 得到信 息,然后改变这一程序。运动建筑师可以利用在线帮助,在整个互动接触内容中为 数控电机 6000 系列软件做参考指南。 从简单到复杂的解决应用 伺服控制是你用伺服调谐器软件控制。 数控电机与 6000 系列伺服控制器相结合 并应用伺服调谐器软件。伺服调谐器是一个新增功能模块,它扩展和提高运动建筑 师的能力。议案建筑师与伺服调谐器结合起来,以提供图形化的反馈方式,反馈实 时运动信息并提供简便环境设置微调收益及相关制参数以及提供文件操作,以保存 并记得微调会议。 请你用运动工具箱软件解决自己的运动控制。运动工具箱实际上是一个为数控 电机和 6000 系列运动控制器而设计的广泛应用的虚拟图标式编程仪器。 当使用运动工具箱与虚拟编程仪时, 编程 6000 系列控制器实质上是完成连接图 形图标,或加上形成框图使之可见。 运动工具箱中包含了 1500 多条命令,状态栏, 实例等。所有的命令、状态栏、实例都包括可视的来源图表,使您可以修改他们, 如果有必要,可以满足您的特殊的需要。运动工具箱同时还具有一个可视窗口,基 于安装程序和一个全面的用户手册,可以帮助您运行得更好更快。 软件电脑辅助运动应用软件 compucamcompucam 是基于微软的编程包,它能从 CAD 程序、示波器文档、数控程序和产生 6000 系列数控电机密码相兼容的运动控制器中输入几何图形。购买数控电机是可行 的,因为 compucam 是一个附加模块,是运动建筑师的菜单栏,它是作为公用部分 而被引用的。程序从 compucam 开始运行 CAD 软件包。一旦程序被起草创作,它就 会被保存为 DXF 文件,或惠普 -吉尔段文档,或 G 代码数控程序。这些几何图形然 后输入 compucam 中,产生 6000 系列代码。在程序运行之后,你可使用的运动建筑 师功能块,如编辑或下载代码等执行程序。 运动执行者软件可轻松编程 6000 系列 运动执行者革命性控制运动编程。这一具有创新意义的软件允许程序员以他们 所熟悉的- 流程图式的方法编程。 运动执行者降低了学习曲线,并使运动控制编程 变得相当容易。运动执行者是一套微软软件,基于图形化窗口的发展,让专家和新 手程序员容易学习计划 6000 系列产品新的编程语言。 简单地拖放代表议案职能的 视觉图标,你可以随时的进行你所需要的操作。运动执行者是一个完整的应用开发 环境的软件。除了视觉编程 6000 系列产品,用户还可以配置,调试,下载, 策划 和执行的议案计划。 伺服与步进.您需要了解的 电机类型及其应用 下一节将会给你介绍一些的适用特别场合的电机,而某些应用是最好避免。应 当强调说,在一个广范的应用范围,电机是可同样满足一个以上的汽车类型, 而选 择往往是由客户偏好、以往经验或与现有的设备的兼容性决定的。一个非常有用的 工具箱,可供你选择适当的运动,为你选择电机与选择软件包是 compumotor 软件 包。使用这个软件,使用户可以轻松找出适当的电机大小和类型。 高扭矩,低转速 连续脉冲适宜于步进电机时,在低速时,就相对于扭矩输出规模和输入功率而 言,它是非常高效率。 微步,在低速应用,可以用来提高平滑度。如可作为计量泵 驱动非常精确的流量控制。 高扭矩,高转速 连续脉冲适应于伺服电机时,其实步进电机应避免使用在这种情况下。这是因 为高速可导致负荷。 简捷,快速,重复性动作 仅是自然域的步进电机由于其在低速时高转矩,因而存在惯性比例大,及缺乏 折算的问题。直流电动机的电刷可限制其潜在的频繁开始,停止和方向的改变。 低速,高光滑的应用 这是最适合于微步或直接驱动伺服电机。 适用于危险环境或在真空中可能不能够使用电刷电机。步进或无刷电机是无所 谓的,靠的是对负荷的需求。牢记当负载过高时,热耗散可能是个问题。选择适合你的电机 导言 运动控制,在其最广泛的意义上说,可能与任何移动式起重机中焊接机器人 液压系统有关。在电子运动控制领域,我们的主要关切系统范围内的有限功率的大 小, 通常高达约 10hp ( 7 千瓦) ,并要求在一个或多个方面有严格精密。这可能 涉及精确控制的距离或速度,但很多时候是双方的,有时还涉及其它参数如转矩或 加速率。在以下所举的两个例子中,焊接机器人,需要精确的控制双方的速度和距 离; 吊臂液压系统采用驱动作为反馈系统,因此,它的准确度会随着操作者的技能的 不同而不同。在严格意义上来说,这将不会被视为一项运动控制系统。 我们的标准运动控制系统由以下三个基本要素组成: 图 1 运动控制系统的组成元件电机招聘专家电机,可能是一个步进电机(要么旋转或线性) ,也可能是直流无刷电机或无刷 伺服马达。电机必须配备一些种回馈装置,除非它是一个步进电机。 图 2 显示了一个完善地反馈控制电机转速的系统。这样一个具有闭环控制系 统的速度伺服系统。 图 2 典型的闭环(速度)伺服系统驱动器是一个电子功率放大器,以提供电力操作电动机来回应低层次的控制信 号。一般来说,驱动器将特别设计,其操作与特定电机类型相配合。例如,你不能 用一个步进驱动器来操作直流无刷电机。 不同电机适应的不同领域 步进电机: 步进电机的好处。 驱动器 电机 控制器 主计算机 或 PLC 控制器/索 引 驱动 电机步进电机有以下好处: (1 )成本低廉(2)坚固耐用(3)结构简单(4 )高可靠性(5)无维修(6 ) 适用广泛(7)稳定性很高( 8)无需反馈元件(8)适应多种工作环境(9)相对伺 服电机更具有保险性。 因此, 几乎没有任何可以想象的失败使步进驱动模块出错。 步进电机驱动简单, 并且驱动和控制在一个开放的闭环系统内。他们只需要 4 个驱动器。低速时,驱动 器提供良好的扭矩,是有刷电机同一帧大小 5 倍连续力距,或相当于无刷电机一倍 扭矩。这往往不再需要变速箱。步进驱动系统迟缓,在限定的范围内,可以更好的 减少动态位置误差。 步进电机弊端。 步进电机有下列缺点: (1 )共振效应和相对长的适应性(2 )在低速,表现粗糙,除非微驱动器来驱 动(3)开环系统可能导致未被查觉的损失(4 )由于过载,他们消耗过多电流。因 此倾向于过热运行。 (5)亏损速度比较高,并可产生过多热量因此,他们噪音很大 (尤其是在高速下) 。 (6)他们的滞后现象导致振荡,这是很难抑制的。对他们的可 行性,这儿有一个限度,而他们的大小,定位精度主要依靠的是机器(例如,滚珠 丝杠的精确度) 。许多这些缺点是可以克服的,通过使用一个闭环控制方案。 注: compumotor 系列能很多的减小或降低了这些不同的步进电机不利之处。 主要有 3 类步进电机: (1)永磁式步进电机 , (2)可变磁阻式步进电动机, (3) 混合式步进电机汽车。 当电动机驱动,在其全步模式,给两个绕组通电时或“2 相“ 通电的时候(见图 1.8 ) ,扭矩可于每一个步将是相同(除极少数的变异和传动特性) 。在半步模式 下,我们交替改变两相电流,如图 1.9 所示。假设该驱动器在每种情况下提供了相 同的绕组电流,再通电时,这将导致更大的转矩。换句话说,交替的步进距将时强 时若。对电动机表现来说,这并不代表着一个重大的威慑。扭矩明显受制于较弱的 一步,但在全步模式时,低速平滑有一个显着的改善。 显然,我们想在每一个步骤实现约相等扭矩对时,这扭矩应该在水平较强的一 步。们可以实现这个,当只有一个绕组通电时,通过用高电流水平。这并不过度消 耗电机,因为该电机的额定电流假定两个阶段被激活(目前的评级是基于许可的情 况温度) 。只有一相通电,如果目前是增加了 40 的功率,同样的总功率将会消 散 。利用这种更高的电流在一相中产生大致相等的扭矩,在交替的步进距中。 (见图 1.10 ) 。我们已经看到,给两相都通与平等电流产生的一个中间步进,居于每一相的中 间位置。如果两相电流是不平等的, 转子位置将转向更强的一极。这种作用是利用细 分驱动,其中细分的大小基于两个绕组中的电流的大小。以这种方式,步长是减少了,而低速平滑度得到大幅度提高。高细分驱动电动机细分整步步进到多达 500 个细分 步 , 转一圈可细分十万步。 在这种情况下, 绕组中的电流极为相似的两个正弦波有 90 相移。 (图 1.11 ) 电机被驱动好像转换成了交流同步电机。事实上,步进电机可被驱 动,从 60 赫兹美(50 赫兹-欧洲)正弦波源头起,包括电容器系列的一相。它将旋转 72 转。 图 1.11 步进电机的相电流 电机招聘专家标准步进电机运行在同就如同我们的简单模式,但有一个更大的数目齿数在转 子和定子中,从而有了一个较小的基本步长。转子有 2 部分,但每部分有 50 个齿。 该半齿位于两部分之间。定子每 5 个齿有 8 个极,完整的共有 40 个齿(见图 1.12 ) 图 1.12 200 步混合标准电机如果我们想象一个齿, 是摆在 2 个定子极点每一齿隙中, 假设定子共有 48 个齿, 少于转子齿数两个。因此,如果转子和定子的齿排列一整圈,他们同样也可以排列 半圈。1/4 和 3/4 圈也同样可以排列。 然而,由于转子齿排列位置,在另一端的转 子,排列将发生在 1/4 和 3/4 位置处。 绕组 4 个一组,并对角线方向的极性相反。如图 1.12 所示 ,北极在转子前面 的 12 点和 6 点位置,吸引着在在背面 3 时和 9 时的南极。通过开关第二组线圈的电 流,定子场模式旋转 45 。不过,要配合这个新的领域,转子只转过 1.8 。相当 于转子,这只转过了四分之一齿间距,每一次旋转要 200 个全步。 注意到,每一次旋转全部时这儿有很多定位点位置,通常是 200 个 。该定位点 的位置与转子齿全面接轨定子齿时相对应。当通电给步进驱动器时, 它通常是“零 阶段“状态时最活跃,也就是两套绕组都通电。因此产生的转子位置并不符合转子自 然定位点的位置。因此,空载时,一旦通电电机将至少步进半步。当然,如果系统 关机,或在零相位位置,电机一旦通电将步进一大步。 另一点要注意的是,对于一个给定电流的绕组,有很多稳定的位置,正如转子 齿(200 步进电机有 50 个齿) 。如果电机是同步电机,导致位置误差将永远是一个 整体倍转子齿或能被 7.2 整除 。电机不能“细分“,如个别一个或两个位置误差,是 由于噪声,错误脉冲或控制器故障造成的。图 2.19 数字伺服驱动图 2.19 显示为伺服电机的数控驱动。所有的主控制功能是微处理器,驱动为 D A 模拟转换器,以产生一个模拟扭矩需求信号。从这个角度上,这台机器非常很像 一个模拟伺服放大器。 反馈的信息是来自隶属该电机轴的一个编码器。编码器生成脉冲流可确定传输 路程,并通过计算脉冲频率,是可以测定转速的。 数码驱动通过求解一系列的方程式,履行同样类似的功能。微处理器是与数学 模型(或“算法“ )的等效的编程模拟系统。这模型预测系统的行为。它响应一个 给定输入的信号并产生速度。它同样也考虑到额外信息如输出速度,速率转变中的 投入和各种调校设定。 解决所有方程需数额需有限的时间,即使是一个快速的处理器一次处理通常也 是 100 ms 和 2 ms 之间 。在此之间,在改变输入或输出,先前的计算值将有没有回 应时,扭矩要求必须保持恒定。因此更新时间成为数字伺服和一台高性能系统关键 的因素,它必须保持及时更新。 调试数字伺服电机可按钮或从一个计算机或终端调试。电位器调整是涉及的。 调试数据是设置在伺服算法的各种系数,因此,它决定了系统的性能。即使如果调 谐进行使用按钮,终值也可以上传到终端,让其进行简单的重复。 在某些应用中,因负载惯量各异,例如一个机器手臂卸载后又带有沉重的负 荷。改变惯性可能是一个系数为 20 或以上,而这样的变化需要该驱动器重新调整, 以保持其稳定。这只不过是在操作系统的适当点通过发送新的调试参数来实现的。(此文转载自 一览 电机英才网 )Step Motor the crane hydraulic system uses the driver as the feedback system so its accuracy varies with the skill of the operator. This wouldnt be considered a motion controlsystem in the strict sense of the term.Our standard motion control system consists ofthree basic elements: Fig. 1 Elements of motion control system The motor. This may be a stepper motor (either rotary or linear), a DC brush motor or a brushless servo motor. The motor needs to be fitted with some kind of feedback device unless it is a stepper motor. Fig. 2 shows a system complete with feedback to control motor speed. Such a system isknown as a closed-loop velocity servo system. Fig. 2 Typical closed loop (velocity) servo systemThe drive. This is an electronic power amplifier thatdelivers the power to operate the motor in response to low-level control signals. In general, the drive will be specifically designed to operate with a particular motor type you cant use a stepper drive to operate a DC brush motor, for instance. Application Areas of Motor Types Stepper Motors Stepper Motor BenefitsStepper motors have the following benefits: Low cost Ruggedness Simplicity in construction High reliability No maintenance Wide acceptance No tweaking to stabilize No feedback components are needed They work in just about any environment Inherently more failsafe than servo motors. There is virtually no conceivable failure within the stepper drive module that could cause the motor to run away. Stepper motors are simple to drive and control in an open-loop configuration. They only require four leads. They provide excellent torque at low speeds, up to 5 times the continuous torque of a brush motor of the same frame size or double the torque of the equivalent brushless motor. This often eliminates the need for a gearbox. A stepper-driven-system is inherently stiff, with known limits to the dynamic position error. Stepper Motor Disadvantages Stepper motors have the following disadvantages: Resonance effects and relatively long settling times Rough performance at low speed unless a microstep drive is used Liability to undetected position loss as a result of operating open-loop They consume current regardless of load conditions and therefore tend to run hot Losses at speed are relatively high and can cause excessive heating, and they are frequently noisy (especially at high speeds). They can exhibit lag-lead oscillation, which is difficult to damp. There is a limit to their available size, and positioning accuracy relies on the mechanics (e.g., ballscrew accuracy). Many of these drawbacks can be overcome by the use of a closed-loop control scheme. Note: The Compumotor Zeta Series minimizes or reduces many of these different stepper motor disadvantages. There are three main stepper motor types: Permanent Magnet (P.M.) Motors Variable Reluctance (V.R.) Motors Hybrid Motors When the motor is driven in its full-step mode, energizing two windings or “phases” at atime (see Fig. 1.8), the torque available on each step will be the same (subject to very small variations in the motor and drive characteristics). In the half-step mode, we are alternately energizing two phases and then only one as shown in Fig. 1.9. Assuming the drive delivers the same winding current in eachcase, this will cause greater torque to be produced when there are two windings energized. In other words, alternate steps will be strong and weak. This does not represent a major deterrent to motorperformancethe 电机招聘专家available torque is obviously limited by the weaker step, but there will be a significant improvement in low-speed smoothness over the full-step mode. Clearly, we would like to produce approximately equal torque on every step, and this torque should be at the level of the stronger step. We can achieve this by using a higher current level when there is only one winding energized. This does not over dissipate the motor because the manufacturers current rating assumes two phases to be energized the current rating is based on the allowable case temperature). With only one phase energized, the same total power will be dissipated if the current is increased by 40%. Using this higher current in the one-phase-on state produces approximately equal torque on alternatesteps (see Fig. 1.10). Fig. 1.8 Full step current, 2-phase onFig. 1.9 Half step currentFig. 1.10 Half step current, profiledWe have seen that energizing both phases with equal currents produces an intermediate step position half-way between the one-phase-on positions. If the two phase currents are unequal, the rotor position will be shifted towards the stronger pole. This effect is utilized in the microstepping drive, which subdivides the basic motor step by proportioning the current in the two windings. In this way, the step size is reduced and the low-speed smoothness is dramatically improved. High-resolution microstep drives divide the full motor step into as many as 500 microsteps, giving 100,000 steps per revolution. In this situation, the current pattern in the windings closely resembles two sine waves with a 90 phase shift between them (see Fig. 1.11). The motor is now being driven very much as though it is a conventional AC synchronous motor. In fact, the stepper motor can be driven in this way from a 60 Hz-US (50Hz-Europe) sine wave source by including a capacitor in series with one phase. It will rotate at 72 rpm.Fig. 1.11 Phase currents in microstep modeStandard 200-Step Hybrid Motor The standard stepper motor operates in the same way as our simple model, but has a greater number of teeth on the rotor and stator, giving a smaller basic step size. The rotor is in two sections as before, but has 50 teeth on each section. The half-tooth displacement between the two sections is retained. The stator has 8 poles each with 5 teeth, making a total of 40 teeth (see Fig. 1.12). Fig. 1.12 200-step hybrid motorIf we imagine that a tooth is placed in each of the gaps between the stator poles, there would be a total of 48 teeth, two less than the number of rotor teeth. So if rotor and stator teeth are aligned at 12 oclock, they will also be aligned at 6 oclock. At 3 oclock and 9 oclock the teeth will be misaligned. However, due to the displacement between the sets of rotor teeth, alignment will occur at 3 oclock and 9 oclock at the other end of the rotor. 电机招聘专家The windings are arranged in sets of four, and wound such that diametrically-opposite poles are the same. So referring to Fig. 1.12, the north poles at 12 and 6 oclock attract the south-pole teeth at the front of the rotor; the south poles at 3 and 9 oclock attract the north-pole teeth at the back. By switching current to the second set of coils, the stator field pattern rotates through 45. However, to align with this new field, the rotor only has to turn through 1.8. This is equivalent to one quarter of a tooth pitch on the rotor, giving 200 full steps per revolution. Note that there are as many detent positions as there are full steps per rev, normally 200. The detent positions correspond with rotor teeth being fully aligned with stator teeth. When power is applied to a stepper drive, it is usual for it to energize in the “zero phase” state in which there is current in both sets of windings. The resulting rotor position does not correspond with a natural detent position, so an unloaded motor will always move by at least one half step at power-on. Of course, if the system was turned off other than in the zero phase state, or the motor is moved in the meantime, a greater movement may be seen at power-up. Another point to remember is that for a given current pattern in the windings, there are as many stable positions as there are rotor teeth (50 for a 200-step motor). If a motor is de-synchronized, the resulting positional error will always be a whole number of rotor teeth or a multiple of 7.2. A motor cannot “miss” individual steps position errors of one or two steps must be due to noise, spurious step pulses or a controller fault. Fig. 2.19 Digital servo driveDigital Servo Drive Operation Fig. 2.19 shows the components of a digital drive for a servo motor. All the main control functions are carried out by the microprocessor, which drives a D-to-A convertor to produce an analog torque demand signal. Fromthis point on, the drive is very much like an analog servo amplifier. Feedback information is derived from an encoder attached to the motor shaft. The encoder generates a pulse stream from which the processor can determine the distance travelled, and by calculating the pulse frequency it is possible to measure velocity. The digital drive performs the same operations as its analog counterpart, but does so by solving a series of equations. The microprocessor is progr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论