


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ComplexityAnalysisofsleepEEGsignalLiLingWangRuiping*dept.ofbiomedicalengineeringBeijingJiaotongUniversityBeijing,AbstractThecomplexityoftheEEGtimeseriesduringsleepingisinvestigated.TherelationshipsbetweenthesesleepstatesandthecomplexitiesoftheEEGareassessed.LempelZivcomplexityisusedasanovelindexforquantifyingthecomplexityoftheEEGtimeseriesduringdifferentsleepstates.ExperimentalresultsshowthattheLempelZiv(LZ)complexityoftheEEGtimeseriesduringactive(REM,rapideyemovement)sleeptendstobehigherthanduringquiet(NREM,nonrapideyemovement)sleep,andthecomplexityduringwakeishigherthanduringsleep.TheLempelZivcomplexitycaneffectivelydistinguishthesleepstatesofthebrain.Keywords-sleepEEG;sleepstates;LempelZivcomplexity(LZ)I.INTRODUCTIONTheelectroencephalogram(EEG)signalsreflecttheelectricalactivityofthebrain.Sleepstudieshavegrowntoencompassabroadrangeoftechnologiesemployedtostudyanddiagnoseavarietyofsleepdisorders.Thestudyofthebrainelectricalactivity,throughtheelectroencephalographicrecords,isoneofthemostimportanttoolsforthestudyofsleep.Duringsleep,advancedcentralandaseriesofplantsystemchange.In1968,theinstituteofthehumanbrainintheUniversityofCaliforniareleasedthedefinitionofsleepandtechnicalstandards.AccordingtothedifferentformsandfeaturesofEEG,EMGandEOG,sleepisdividedintowakeperiod(W),rapideyemovement(REM),nonrapideyemovement(NREM),including(S1,S2,S3andS4period)6.FollowingthenonlinearcharacteristicofsleepEEG,researchershavewitnessedagrowinguseofvariousnonlinearapproachesinfeatureextractionofEEGsignalsintherecentyears,suchasLyapunovexponents,complexity,spectrumentropyetc.Allthesemethodshavetheirrespectivemeritsanddemerits.TheEEGdataofdifferentsleepingstagesareusedtocalculatethecorrespondingcharacteristicparameters.Inthestudy,thesectiongivesthebriefintroductionsofcomplexity,thedataweuseandhowtoanalyzethedata.Thesectiongivesthecalculatedresultsanddiscussions.Finally,thesectionpresentssomeremarksbasedonthestudy1.II.METHODA.ComplexityLempleandZivdefinedthatalimitedlongseriesofcomplexityshouldbethespeedofnewpatternalongwiththesequenceslengthincreased2.Inrecentyears,LZcomplexityhasbeenappliedextensivelyinbiomedicalsignalsanalysisasametrictoestimatethecomplexityofdiscrete-timephysiologicsignals10.LZcomplexityhasalsobeenusedtostudybrainfunction,braininformationtransmission,EEGcomplexityinpatientswithdiseases,andsleepEEGsignals.ThecomplexityofEEGsequenceperformsrandomdegreeoftheEEGsequenceandreflectsthesizeoftheinformation2.LZcomplexityanalysisisbasedonacoarse-grainingofthemeasurements.Inthecontextofbiomedicalsignalanalysis,typicallythediscrete-timebiomedicalsignalisconvertedintoabinarysequence.Incomparisionwiththethreshold,thesignaldataareconvertedintoa0-1sequencePasfollows:()()()1,2,.,(1),SsssrQsr=+(1)Where()()0,1,dxiTsiotherwise=(2)Usuallythemedianisusedasthethresholdbecauseofitsrobustnesstooutliers.Previousstudieshaveshownthat0-1conversionisadequatetoestimatetheLZcomplexityinbiomedicalsignals.InordertocomputeLZcomplexity,thesequencePisscannedformlefttorightandthecomplexitycounterisincreasedbyoneuniteverytimeanewsubsequenceofconsecutivecharactersisencountered.Thecomplexitymeasurecanbeestimatedusingthefollowingalgorithm.1)LetSandQdenotetwosubsequencesofPandSQbetheconcatenationofSandQ,whilesequenceSQvisderivedfromSQafteritslastcharacterisdeleted(vdenotesthe978-1-4244-4713-8/10/$25.002010Crownoperationofdeletingthelastcharacterinthesequence).Let()2sdenotethevocabularyofalldifferentsubsequencesofSQv.Atthebeginning,()cn=1,S=()1s,Q=()2s,therefore,SQv=()1s.2)Ingeneral,()()()1,2,.,(1),SsssrQsr=+then()()()1,2,.,;SQvsssr=ifQbelongsto()vSQv,thenQisasequenceofSQv,notanewsequence.3)RenewQtobe()1sr+,()2sr+andjudgeifQbelongsto()vSQvornot.4)RepeatthepreviousstepsuntilQdoesnotbelongto()vSQv.Now()()()1,2,.,Qsrsrsri=+isnotasubsequenceofSQv=()()()1,2,.,1sssri+,soincrease()cnbyone.5)Thereafter,Sisrenewedtobe(1),(2),.,()Ssssri=+,and(1)Qsri=+.TheaboveprocedureisrepeateduntilQisthelastcharacter.AtthistimethenumberofdifferentsubsequencesinPthemeasureofcomplexityis()cn.Inordertoobtainacomplexitymeasurewhichisindependentofthesequencelength,()cnmustbenormalized.Ifthelengthofthesequenceisnandthenumberofdifferentsymbolsinthesymbolsetis,ithasbeenprovedthattheupperboundof()cnisgivenby()(1)log()nancnn=(3)Wherenisasmallquantityand()0nn.Ingeneral,()lognnistheupperboundof()cn,wherethebaseofthelogarithmis,i.e.,lim()()log()nncnbnn=(4)Fora0-1sequence,=2,therefore()2log()nbnn=(5)And()cncanbenormalizedvia()bn.()()()cnCnbn=(6)Where()Cn,thenormalizedLZcomplexity,reflectsthearisingrateofnewpatternsinthesequence17810.ComplexitiesofEEGaredifferentcorrespondingtothedifferentsleepstages.Accordingtotheexperienceandanalysis,thecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.B.ExperimentDataInthisstudy,theEEGdataisfromMIT/BIHPolysomnographicdatabase.Thisdatabaseisacollectionofrecordingsofmultiplephysiologicsignalsduringsleep.SubjectsweremonitoredinBostonsBethIsraelHospitallaboratory.Therecorddataevery30sisfollowedbyaannotationandthisannotaitoncontainssleepstages,heartconditionsandbreathing.Inthisstudy,wechoose“slp01a,slp01b,slp02a,slp02b,slp03,slp04,slp14,slp48”toanalyze.TheEEGchannelsareC4-A1、C4-A1、O2-A1、O2-A1、C3-O1、C3-O1、C3-O1、C3-O1.Thesedatalengthare2h,3h,3h,214h,6h,6h,6h,1016handthesamplingfrequencyis250HZ,markingthecorrespondingsleepingstagesevery30s.C.DATAAnalysisandResultsThestudygot2500pointsfromdifferentsleepingstages10sabouteveryobject,analyzedthesedataandcalculatedthecomplexities.OurprogramisinMATLABandtheresultsobtainedareshowedinTABLE1andFigure.1.TABLE1.Thecomplexityofeachsleepingstage(average)SubjectWakeperiodNREMperiodREMperiodperiodperiodperiodperiodSlp01a0.5012-0.46120.36510.22580.3206Slp01b0.79460.34540.3183-0.3564Slp02a0.62760.32460.27540.21670.20320.2122Slp02b0.77930.75630.2664-0.5508Slp030.39280.36800.26640.2099-0.2799Slp040.66210.58240.58020.2731-0.6073Slp140.41090.27990.24380.2032-0.5057Slp480.78560.51470.50570.1896-0.3251average0.61930.45300.36470.24290.21450.3947Figure.1.Theanalysisofthecomplexityofeachsleepingstage.Fromthetable1,thereistheconclusion:fromWakeperiodto、periodinNREMperiod,thecomplexitiesareallbythemaximumreducinggradually,then,backtoclosetoperiodandperiodwhenREMperiod.TheFig.1alsocanprovetheconclusion.Wefoundweaknonlinearsignaturesinallsleepstagesinthisstudy.Theresultsshowthatduringsleeptherearevarioustransitionsandthedegreeofchaoticityisdependentonthestageofsleep.ThecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.Asaresult,fromshallowtodeepsleep,theoutcomemeansthediminutionoffreedomofbrainactivity.InthecaseofsleepEEGthesleepstagesareconsideredasdistinctpsychophysiologicalstates789.CONCLUDINGREMARKSInthispaper,thisstudycalculatedcomplexityofsleepingEEGsignalsofeighthealthyadults.Theresultsshowthatthenonlinearfeaturecanreflectsleepingstageadequately.Themethodisusefulinautomaticrecognitionofsleepstages.Butithassomelimitations.Complexityisalsosimplebutlosesinformationdetailsinitspreprocessingoforiginalmeasurementdata1.Duetothecoarseningpretreatmentalgorithmofcomplexityandanalysistimesequencefromone-dimensionalangle,thealgorithmofcomplexityiseasytoloseinformation.Theeffectsoftheotherfactorssuchasageandgenderontheperformanceofthenonlinearfeatureextractionmethodarestillunderactivetudy2.Inspiteofthesedifficultiesandshortcoming,complexityisusefulfortheanalysisofsleepEEG.REFERENCES1Wei-XingHe,Xiang-GuoYan,Xiao-PingChen,andHuiLiu,“NonlinearFeatureExtractionofSleepingEEGSignals”,Proceedingsofthe2005IEEE,EngineeringinMedicineandBiology27thAnnualConference.Shanghai,China,September1-4,2005.2DongGuo-Ya,WuXi-Yao,”ThecomparisonBetweenApproximateEntropyandComplexityintheStudyofSleepEEG”,BeijingUniversityofScienceandTechnolongy.3LuWeimin,LiuFubin,“AnalysisoftheNonlinearDynamicsforSleepEEG”,ChinaMedicalEquipment,2008,5(2):16-20.4FuXiaohua,LiHongpei,“SleepandHealth”,ChinaMedicalJournals,2003,38(8).5DingBaoxi,ChenZhihua,ZhaoLi,“CorrelationAnalysisofEEGData”,ProgressinModernBiomedicine,2008,8(1).6LIUHui,HEWei-xing,CHENXiao-ping,“EEGtime-seriesanalysisusing
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025年标准)管道安装放工协议书
- (2025年标准)关于盖章的协议书
- 2026届陕西省西安市西工大附中高二化学第一学期期末学业水平测试试题含答案
- 改革开放教学课件
- 2026届上海中学、复旦附中等八校化学高三上期末监测试题含解析
- 2026届黑龙江省哈尔滨六中化学高一第一学期期末教学质量检测模拟试题含解析
- 2025年企业文化创新与发展企业战略与文化融合预测试题及答案
- 智能仓储设备选型与采购方案
- 2025年旅游行业导游员招聘考试预测题及解析
- 2025年法律专业研究生入学考试法律英语精讲
- 公安行政案件办理务实课件
- 房地产样板间装饰工程重点难点及措施
- 康复科护理金点子
- 工地油库安全管理办法
- 全球治理转型-洞察及研究
- 高等数学课程教学中遇到的问题及解决对策
- (高清版)DB32∕T 4001-2025 公共机构能耗定额及计算方法
- 电力物资打包方案(3篇)
- 2025至2030中国味精行业发展趋势分析与未来投资战略咨询研究报告
- 你的样子就是教育的样子-一位校长对教师行为规范的深度思考建议收藏
- 中医治疗泌尿系结石课件
评论
0/150
提交评论