




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题:函数的单调性教材:人教 A 版必修(1)【教学目标】(1)知识与技能: 使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法(2)过程与方法: 通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力 (3)情感态度价值观: 通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程【教学重点】 函数单调性定义的构建、判断及证明【教学难点】 单调性定义构建中从自然语言到符号语言的过渡【教学方法】 教师启发讲授,学生探究学习【教学过程】一、创设情境,引入课题(播放中央电视台天气预报的音乐)假设下图为揭阳市今天晚上到明天 24 小时内的气温变化图,观察这张气温变化图,请一位同学上讲台来为我们在座的各位观众播报一下明天的天气情况。意图:这一环节让学生通过身边熟悉的情景去感受数学就在大家身边,数学知识的起源和发展是自然的,问题虽然开放,但因切合学生的实际,不同程度的学生都能说一说,讲一讲,学生参与学习的热情和兴趣必然得到不同程度的激发。22yxoyxoyxo-22yxo课堂预设:学生应该能说到一天中什么时候气温最高,什么时候气温最低,一天的温差是多少,能说到从凌晨 0 点到 4 点气温越来越低,从 4 点到下午 2点,气温越来越高,等等。学生发言后,为了突出单调性的主题,教师强调从0 点到 4 点图象整体程下降的趋势,即气温随时间的增大而减少,从 4 点到下午 2 点图象整体程上升的趋势,即气温随时间的增大而增大在现实生活中,关注函数图象的这种变化趋势大到决策和投资,小到生活起居都有很大的帮助(引入函数单调性概念,板书) 。二、归纳探索,形成概念1借助图象,直观感知问题 1.观察函数 的图象,四个函数图xx1,2,2像从左往右各有什么变化趋势?你能用自变量 x 和函数值 y 描述这种趋势么?(1) (2) (3) (4)课堂预设(1)图象整体上升,即在 上 随 x 的增大而增大;(,)y(2)图象整体下降,即在 上 随 x 的增大而减小;(3)在 y 轴左侧,图象整体下降,即在 上 y 随 x 的增大而减小;在(,0)y 轴右侧,图象整体上升,即在 上 y 随 x 的增大而增大;(0,)(4)在 y 轴左侧,图象整体下降,即在 上 y 随 x 的增大而减小;在(,)y 轴右侧,图象整体下降,即在 上 y 随 x 的增大而减小。(,)问题 2.能不能根据自己的理解说说什么是增函数、减函数吗?课堂预设:如果函数 在某个区间上随自变量 x 的增大,y 也越来越大,()fx我们说函数 在该区间上为增函数;如果函数 在某个区间上随自变量 x()fx ()f的增大,y 越来越小,我们说函数 在该区间上为减函数()f意图:这一步环节还是感性认识的阶段,相当于用自然语言对增(减)函数进行定义,从问题情境到学生熟悉的函数,意在通过进一步的感知突出从图象语言向自然语言的过度,为最后实现从自然语言向符号语言的过度搭桥、修路)2跨越感性,形成定义刚刚我们对什么是增函数,什么是减函数结合图象已给出定性的描述,但我们知道,数学是讲逻辑(注重推理) ,即使一个函数已给出图象,我们要判断它在给定区间的增减性也不能仅靠图象,因为图象替代不了推理论证,更何况还有很多的函数假如不借助工具是很难画出它的图象的,这就要求我们对函数的增减性要作出更严格的定义。 (是否可以将自然语言的描述称为定性描述、符号语言的描述称为定量描述?)问题 1.如何从解析式的角度描述 在区间 上随着 的增大,2)(xf0,)(x相应的函数值 而增大?()fx问题: (1) 在给定区间内取两个数,例如 1 和 2,因为 1222,所以在 上为增函?2)(xf,0(2)因为 1222324252,所以 在 为增函数?2)(xf0,)((3)在区间 任取两个 ,得到, ,当,)(12x21(fx时,有 。这时,我们就说 在区间 上为增函1212(fx2f )数 对于学生错误的回答,引导学生分别图形语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量 21,x问题 2.你能仿照这种描述说明一般的函数 在定义域内某个确定的区()fx间 D 上面为增函数的定义吗?师生共同探究,得出增函数严格的定义, (1)函数单调性定义: 学生类比得出减函数的定义,给出单调区间概念。(2)巩固概念:图像语言,自然语言第 1 题,是对任意性的强调,第 2 题对区间的强调,第 3 题对单调性的形式化定义和图像之间的密切联系的强调。三新知应用,形成技能1.阅读例题 1 对照增(减)函数的定义,仔细观察课前的气温变化图,说出函数的单调区间,以及在每个区间上,它是增函数还是减函数。2.阅读例题 2 完成下列实际问题:在一杯水中,加入一定量的糖,糖加得越多糖水就越甜你能运用所学过的数学知识来解释一下这一现象吗? 3归纳解题步骤2 1212 12 1212()(1),(,)0()( (,) ().fxfxxfxf f1.若 函 数 满 足 在 区 间 一 定 是 增 函 数 么 ?在 图 像 上 任 意 取 两 个 值 , , 当 时 , 对 应 的 函 数 值 ,有 什 么 大 小 关 系 ? 你 能 证 明 么 ? 若 把 条 件 改 成 当 时 结 论 还 成 立 了 么 ?3.请 举 一 个 具 体 函 数 的 例 子 在 对 任 意 的 , 都 有引导学生归纳证明函数单调性的步骤:取值、作差、变形、定号、结论四、归纳小结,提高认识1小结(1) 概念探究过程:图像语言自然语言符号语言(2) 证明方法和步骤:取值、作差、变形、定号、结论(3) 数学思想方法:数形结合,归纳类比,抽象概括2作业书面作业:作业 1.证明:(1)函数 在 上是减函数;2()1fx(,0)(2)函数 在 是增函数;作业 2.探究一次函数 的单调性()()fmbR课后探究:1. 要证明函数 在区间 上是增函数,除了用定义来证,如果x,a可以证明对任意的 ,且 有 可以12,12x12()0fx吗?2.研究函数 的单调性)0(xy意图:第一题为后面的导数做铺垫,使学时的知识体系更加具连贯和系统性。第二题是双钩函数,为均值不等式做准备。同时探究课题的提出,增加的课堂的发散性,培养学生独立解决问题的能力。1)(xf教学设计说明 本节课是一节概念课函数单调性的本质是利用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范 的书面表达围绕以上两个难点,在本节课的处理上,我着重注意了以 下几个问题:1、重视学生的亲身体验具体体现在两个方面:将新知识与学生的已有知识建立了联系如:学生对一次函数、二次函数和反比例函数的认识,学生对“y 随 x 的增大而增大”的理解;结合实际情况运用新知识尝试解决新问题如:函数 单调性的讨论()1xf2、重视学生发现的过程如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程3、重视学生的动手实践过程通过对定义的解读、巩固,让学生动手去实践运用定义4、重视课堂问题的设计通过对问题的设计,引导学生解决问题教学设计说明本节课是一节概念课函数单调性的本质是利用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:1、重视学生的亲身体验具体体现在两个方面:将新知识与学生的已有知识建立了联系如:学生对一次函数、二次函数和反比例函数的认识,学生对“y 随 x 的增大而增大”的理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 衡水金卷四省(四川云南)高三联考9月联考历史(含答案)
- 2025租赁合同终止协议书范文
- 企业安全培训账号密码课件
- 氢气制备与储存优化-洞察及研究
- 出入口保安培训课件
- 2025电视剧版权购买合同范本
- 2025合同范本合同协议书模板管理规程
- 2025年版融法合同违约诉状范本
- 2025管理技能合同风险评估与控制方法
- 2025《上海市机动车驾驶培训服务合同(示范文本)》
- 文创市集限定摊位协议
- 妇产科护理 课件06章-正常产褥期母婴的护理
- 《劳模工匠之光》课件 第1、2单元 民族大厦的基石、改革攻坚的先锋
- 2025年中国癌症筛查及早诊早治指南(试行)
- 2025年全国企业员工全面质量管理知识竞赛题库及答案
- 基孔肯雅热防控指南专题课件
- 2025年中级钳工技能鉴定考核试题库(附答案)
- 2025秋教科版科学二年级上册教学课件:第一单元第1课 动物的家
- GB/T 15620-2025镍及镍合金实心焊丝和焊带
- 名誉顾问聘任管理办法
- 牧昆:亚朵星球怎样用内容打增量 洞察无法逃离日常用真人秀的思路打增量
评论
0/150
提交评论